1,如图1,在平行四边形ABCD中,下列各式不一定正确的是( )
A.∠1+∠2=180° B.∠2+∠3=180° C.∠3+∠4=180° D.∠2+∠4=180°
2,如图2,在□ABCD中,EF//AB,GH//AD,EF与GH交于点O,则该图中的平行四边形的个数共有( ) A.7 个 B.8个 C.9个 D.11个
E
F
A
B
C
D
图3
图4
图2
图1
3,如图3,在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F=( )A. 110° B .30° C.50° D.70°
4,对角线互相垂直平分且相等的四边形一定是( )
A.正方形 B.菱形 C.矩形 D.等腰梯形
5,下列说法中,正确的是( )
A. 正方形是轴对称图形且有四条对称轴B.正方形的对角线是正方形的对称轴
C.矩形是轴对称图形且有四条对称轴 D.菱形的对角线相等
6,菱形、矩形、正方形都具有的性质是( )
A.对角线相等 B.对角线互相垂直 C.对角线互相平分 D.对角线平分一组对角
7,已知:如图4,菱形ABCD中,对角线AC与BD相交于点O,OE∥DC交BC于点E,AD=6cm,则OE的长为( )A.6 cm B.4 cm C.3 cm D.2 cm
A
B
C
D
图7
图6
1m
1m
30m
20m
图8
平行四边形
矩形
正方形
图5
8,在学习“四边形”一章时,小明的书上有一图因不小心被滴上墨水(如图5),看不清所印的字,请问被墨迹遮盖了的文字应是( )
A.等边三角形 B.四边形 C.等腰梯形 D.菱形
9,如图6,在宽为20m,长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地. 根据图中数据,计算耕地的面积为( )A.600m2 B.551m2 C.550 m 2 D.500m2
10,如图7,在一个由4×4个小正方形组成的正方形网格中,阴影部分面积与正方形ABCD的面积比是 ( )A.3∶4 B.5∶8 C.9∶16 D.1∶2
11,如图8,AB∥DC,AD∥BC,如果∠B =50°,那么∠D=___度.
图10
12,已知梯形ABCD中,AD∥BC,∠ABC=60°,BD=2,AE是梯形的高,且BE=1,则AD=___.
A
E
B
C
D
F
C1
图11
C
图12
H
D
A
E
B
F
G
图9
13,一个平行四边形被分成面积为S1、S2、S3、S4的四个小平行四边形(如图9),当CD沿AB自左向右在平行四边形内平行滑动时, S1·S4与S2·S3与的大小关系是___.
14,如图10,已知AB∥DC,AE⊥DC,AE=12,BD=15,AC=20, 则梯形ABCD的面积为___.150
15,矩形纸片ABCD中,AD=4cm ,AB=10cm,按如图11方式折叠,使点B与点D重合,折痕为EF,则DE=___cm.
16,矩形ABCD中,对角线AC、BD相交于点O,∠AOB=2∠BOC.若AC=18cm,则AD=___cm.
17,如图12,矩形ABCD的相邻两边的长分别是3cm和4cm,顺次连接矩形ABCD各边的中点,得到四边形EFGH,则四边形EFGH的周长等于___cm,四边形EFGH的面积等于___cm2.
18,在直线l上依次摆放着七个正方形(如图13所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+S2+S3+S4=___.
图13
19,如图14,等腰梯形ABCD中,AD∥BC,AD=3,AB=4,BC=7.求∠B的度数.
20,如图15,四边形ABCD是平行四边形,对角线AC、BD交于点O,过点O画直线EF分别交AD、BC于点E、F.求证:OE=OF.
图17
A
B
C
D
O
E
图15
E
D
C
O
B
F
A
图14
A
C
D
B
21,如图17,在□ABCD中,∠ABC=5∠A,过点B作BE⊥DC交AD的延长线于点E,O是垂足,且DE=DA=4cm,求:(1)□ABCD的周长;(2)四边形BDEC的周长和面积(结果可保留根号).
22,如图18,□ABCD的对角线AC的垂直平分线与边AD、BC分别相交于点E、F.求证:四边形AFCE是菱形.
图18
图19
图20
23,如图19,正方形ABCD中,P是CD边上一点,DF⊥AP,BE⊥AP.求证:AE=DF.
24,如图20,在矩形ABCD中,P是形内一点,且PA=PD.求证:PB=PC.
25,(2008年芜湖市)如图,在梯形中,,,,于点E,F是CD的中点,DG是梯形的高.
(1)求证:四边形AEFD是平行四边形;
(2)设,四边形DEGF的面积为y,求y关于x的函数关系式.
参考答案:
一、1,D;2,C;3,D;4,A;5,A;6,C;7,C;8,D;9,B;10,B.
二、11,50;12,2;13,S1·S4=S2·S3;14,150;15,;16,9;17,10、6;18,4.
三、19,过A点作AE∥CD,有□AECD,则△ABE为等边三角形. 即∠B=60°;20,因为四边形ABCD是平行四边形,所以AD∥BC,AO=CO,即∠EAO=∠FCO,又∠AOE=∠COF,则△AOE≌△COF,故OE=OF;21,在□ABCD中,因为∠ABC=5∠A,又∠A+∠B=180°,所以∠A=30°,而AB∥DC,BE⊥DC,所以BE⊥AB,在Rt△ABE中,∠ABE=90°,AE=2AD=8cm,∠A=30°,所以BE=AE=4cm,由勾股定理,得AB==4(cm),所以□ABCD的周长=(8+8)cm;(2)因为BC∥AD,BC=AD,而AD=DE,所以DE=BC且DE∥BC,即四边形BDEC是平行四边形,又BE⊥DC,所以□BDEC是菱形,所以四边形BDEC的周长=4DE=16(cm),面积=DC·BE=8(cm2);22,易证△AOE≌△COF,所以OE=OF,所以四边形AFCE是平行四边形,又AC⊥EF,所以四边形AFCE是菱形;23,证△ABE≌△DAF即得;24,证△PBA≌△PCD即得;
25,【答案】:(1) 证明: ∵,∴梯形ABCD为等腰梯形.∵∠C=60°,∴,又∵,
∴.∴.∴.
由已知,∴AE∥DC.
又∵AE为等腰三角形ABD的高, ∴E是BD的中点,
∵F是DC的中点, ∴EF∥BC. ∴EF∥AD.
∴四边形AEFD是平行四边形.
(2)解:在Rt△AED中, ,∵,∴.
在Rt△DGC中 ∠C=60°,并且,∴.
由(1)知: 在平行四边形AEFD中,又∵,∴,
∴四边形DEGF的面积,
∴ .