1
第 2 课时  两边成比例且夹角相等的两个三角形相似
学习目标: 
1、掌握并会推导相似三角形的判定定理 2.
2、会用相似三角形的判定定理 2 进行一些简单的判断、证明和计算.
学习重点:灵活运用相似三角形的判定定理 2 证明和解决有关问题.
预设难点:相似三角形的判定定理 2 的推导和应用.
☆  预习导航  ☆
一、链接
1、        三角形一边的直线与其他两边(或               )相交,截得的三角形与原三角形           .
2、如果一个三角形的两个角分别与另一个三角形的两个角            ,那么这两个三角形相似(可简
单说成:                                ).
3、如果一个三角形的两条边分别与另一个三角形的两条边           ,并且夹角       ,那么这两个
三角形全等(可简单说成:                  ).
二、导读
结合课本写一写相似三角形的判定定理 2 的证明过程.
☆  合作探究  ☆
1、如图,在四边形 ABCD 中,∠A = ∠CBD,AB = 15cm,AD = 20cm,BD = 18cm,BC = 24cm,求 CD 的长.
2、如图,点 C、D 在线段 AB 上,△PCD 是等边三角形.
(1)当 AC、CD、BD 满足什么数量关系时,△ACP∽△PDB? 
(2)当△ACP∽△PDB 时,求∠APB 的度数.2
☆  归纳反思  ☆
本节课你有哪些收获?还存在哪些困惑?
☆  达标检测  ☆   
1、如图,D 是△ABC 一边 BC 上的一点,△ABC∽△DBA 的条件是(    )
A.   B.    C.AB2=CD·BC   D. =BD·
2、已知:如图,D 是△ABC 边 AB 上的一点,且 AC2 =AD·AB.
求证:∠ADC=∠ACB.
AC AD
BC BD
= AC AB
BC AD
= 2AB BC