由莲山课件提供http://www.5ykj.com/ 资源全部免费
第3课时 多项式乘以多项式
01 基础题
知识点1 直接运用法则计算
1.计算(2x-1)(5x+2)的结果是(D)
A.10x2-2 B.10x2-5x-2
C.10x2+4x-2 D.10x2-x-2
2.填空:(2x-5y)(3x-y)=2x·3x+2x·(-y)+(-5y)·3x+(-5y)·(-y)=6x2-17xy+5y2.
3.计算:
(1)(2a+b)(a-b)=2a2-ab-b2;
(2)(x-2y)(x2+2xy+4y2)=x3-8y3.
4.计算:
(1)(m+1)(2m-1);
解:原式=2m2-m+2m-1=2m2+m-1.
(2)(2a-3b)(3a+2b);
解:原式=6a2+4ab-9ab-6b2=6a2-5ab-6b2.
(3)(2x-3y)(4x2+6xy+9y2);
解:原式=8x3+12x2y+18xy2-12x2y-18xy2-27y3=8x3-27y3.
(4)(2x-y)(x+y);
解:原式=(2x2+xy-y2)=x2+xy-y2.
(5)a(a-3)+(2-a)(2+a).
解:原式=a2-3a+4+2a-2a-a2=-3a+4.
5.先化简,再求值:(2x-5)(3x+2)-6(x+1)(x-2),其中x=.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
解:原式=6x2+4x-15x-10-6x2+12x-6x+12=-5x+2.
当x=时,原式=-5×+2=1.
知识点2 多项式乘以多项式的应用
6.若一个长方体的长、宽、高分别是3x-4,2x-1和x,则它的体积是(B)
A.6x3-5x2+4x B.6x3-11x2+4x
C.6x3-4x2 D.6x3-4x2+x+4
7.为参加市里的“灵智星”摄影大赛,小阳同学将同学们参加“义务献爱心”活动的照片放大为长为a厘米,宽为a厘米的长方形形状,又精心在四周加上了宽2厘米的装饰彩框,那么小阳同学的这幅摄影作品照片占的面积是(a2+7a+16)平方厘米.
8.我校操场原来的长是2x米,宽比长少10米,现在把操场的长与宽都增加了5米,则整个操场面积增加了(20x-25)平方米.
知识点3 (x+p)(x+q)=x2+(p+q)x+pq
9.下列多项式相乘的结果为x2+3x-18的是(D)
A.(x-2)(x+9) B.(x+2)(x-9)
C.(x+3)(x-6) D.(x-3)(x+6)
10.计算:
(1)(x-3)(x-5)=x2-8x+15;
(2)(x+4)(x-6)=x2-2x-24.
11.若(x+3)(x+a)=x2-2x-15,则a=-5.
12.计算:
(1)(x+1)(x+4);
解:原式=x2+5x+4.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)(m-2)(m+3);
解:原式=m2+m-6.
(3)(y+4)(y+5);
解:原式=y2+9y+20.
(4)(t-3)(t+4).
解:原式=t2+t-12.
02 中档题
13.已知(x+1)(x-3)=x2+ax+b,则a,b的值分别是(B)
A.a=2,b=3 B.a=-2,b=-3
C.a=-2,b=3 D.a=2,b=-3
14.已知(4x-7y)(5x-2y)=M-43xy+14y2,则M=20x2.
15.已知a-b=5,ab=3,则(a+1)(b-1)的值为-3.
16.计算:
(1)(x3-2)(x3+3)-(x2)3+x2·x;
解:原式=x6+x3-6-x6+x3=2x3-6.
(2)(-7x2-8y2)·(-x2+3y2);
解:原式=7x4-21x2y2+8x2y2-24y4=7x4-13x2y2-24y4.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(3)(3x-2y)(y-3x)-(2x-y)(3x+y).
解:原式=3xy-9x2-2y2+6xy-6x2-2xy+3xy+y2=-15x2+10xy-y2.
17.化简求值:(x-2y)(x+3y)-(2x-y)(x-4y),其中x=-1,y=2.
解:原式=x2+3xy-2xy-6y2-(2x2-8xy-xy+4y2)
=x2+xy-6y2-(2x2-9xy+4y2)
=-x2+10xy-10y2.
当x=-1,y=2时,
原式=-(-1)2+10×(-1)×2-10×22
=-61.
18.求出使(3x+2)(3x-4)>9(x-2)(x+3)成立的非负整数解.
解:原不等式可化为
9x2-12x+6x-8>9x2+27x-18x-54,
即15x<46.解得x<.
∴x取非负整数为0,1,2,3.
19.小思同学用如图所示的A,B,C三类卡片若干张,拼出了一个长为2a+b、宽为a+b的长方形图形.请你通过计算求出小思同学拼这个长方形所用A,B,C三类卡片各几张(要求:所拼图形中,卡片之间不能重叠,不能有空隙),并画出他的拼图示意图.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
解:因为(2a+b)(a+b)=2a2+3ab+b2,所以所用A,B,C三类卡片分别为3张,1张,2张,图略(图不唯一).
03 综合题
20.已知将(x3+mx+n)(x2-3x+4)展开的结果不含x3和x2项.(m,n为常数)
(1)求m、n的值;
(2)在(1)的条件下,求(m+n)(m2-mn+n2)的值.
解:(1)原式=x5-3x4+4x3+mx3-3mx2+4mx+nx2-3nx+4n=x5-3x4+(4+m)x3+(-3m+
n)x2+(4m-3n)x+4n.
∵不含x3和x2项,
∴解得
(2)(m+n)(m2-mn+n2)
=m3-m2n+mn2+m2n-mn2+n3
=m3+n3.
当m=-4,n=-12时,
原式=m3+n3=(-4)3+(-12)3=-1 792.
由莲山课件提供http://www.5ykj.com/ 资源全部免费