专题18 数学文化问题(精讲)-中考数学高频考点突破(解析版)
加入VIP免费下载

专题18 数学文化问题(精讲)-中考数学高频考点突破(解析版)

ID:648971

大小:654.5 KB

页数:8页

时间:2022-05-14

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
【课标解读】 数学文化是指数学在发展过程中蕴含的人文成分,这个人文成分包括以下这些方面的要素,例如包括数 学概念、公式一数学游戏一数学家的创造活动+ 数学的发展史一数学发展社会背景等数学史,还包括日常应 用中的数学,以及数学思想方法和数学精神等。在近几年的中考中,以数学文化为载体的数学题越来越多, 只要我们平时注意积累和了解这方面的常识,解题时注意审题,实现载体与考点的有效转化,透过现象看 本质,问题便可迎刃而解. 【解题策略】 首先在理解古代名人研究的成果的基础上,结合语意进行探索,并进行转化,转为为数学知识进行解 答. 【考点深剖】 ★考点一 以古代名人或者成就为背景 【典例 1】2018•莱芜•4 分)如图,若△ABC 内一点 P 满足∠PAC=∠PCB=∠PBA,则称点 P 为△ABC 的布罗卡 尔点,三角形的布罗卡尔点是法国数学家和数学教育家克雷尔首次发现,后来被数学爱好者法国军官布罗 卡尔重新发现,并用他的名字命名,布罗卡尔点的再次发现,引发了研究“三角形几何”的热潮.已知△ ABC 中,CA=CB,∠ACB=120°,P 为△ABC 的布罗卡尔点,若 PA= ,则 PB+PC= . 【分析】作 CH⊥AB 于 H.首先证明 BC= BC,再证明△PAB∽△PBC,可得 = = = ,即可求出 PB.PC; 【解答】解:作 CH⊥AB 于 H. ∴ = = = , ∵PA= , ∴PB=1,PC= , ∴PB+PC=1+ . 故答案为 1+ .学科&网 ★考点二 以古代名著作品为背景 【典例 2】(2018•福建)我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索, 索比竿子长一托.折回索子却量竿,却比竿子短一托“其大意为:现有一根竿和一条绳索,用绳索去量竿, 绳索比竿长 5 尺;如果将绳索对半折后再去量竿,就比竿短 5 尺.设绳索长 x 尺,竿长 y 尺,则符合题意 的方程组是( ) A. B. C. D. ★考点三 以科学技术为背景 【典例 3】(2016·陕西)某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城 南建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁” 的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离 不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮 和“望月阁”之间的直线 BM 上平放一平面镜,在镜面上做了一个标记,这个标记在直线 BM 上的对应位置 为点 C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点 D 时,看到“望月阁”顶端点 A 在镜面中 的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度 ED=1.5 米,CD=2 米,然后,在阳光下,他们 用测影长的方法进行了第二次测量,方法如下:如图,小亮从 D 点沿 DM 方向走了 16 米,到达“望月阁” 影子的末端 F 点处,此时,测得小亮身高 FG 的影长 FH=2.5 米,FG=1.65 米. 如图,已知 AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中 提供的相关信息,求出“望月阁”的高 AB 的长度. 【考点】相似三角形的应用. ★考点四 以其他方面的知识为背景 【典例 4】阅读理解:如图 1,⊙O 与直线 a、b 都相切,不论⊙O 如何转动,直线 a、b 之间的距离始终保 持不变(等于⊙O 的直径),我们把具有这一特性的图形成为“等宽曲线”,图 2 是利用圆的这一特性的例 子,将等直径的圆棍放在物体下面,通过圆棍滚动,用较小的力既可以推动物体前进,据说,古埃及人就 是利用这样的方法将巨石推到金字塔顶的. 拓展应用:如图 3 所示的弧三角形(也称为莱洛三角形)也是“等宽曲线”,如图 4,夹在平行线 c,d 之 间的莱洛三角形无论怎么滚动,平行线间的距离始终不变,若直线 c,d 之间的距离等于 2cm,则莱洛三角 形的周长为 cm. 【点评】本题主要考查新定义下弧长的计算,理解“等宽曲线”得出等边三角形是解题的关键. 【讲透练活】 变式 1:(2018 广西南宁)(3.00 分)如图,分别以等边三角形 ABC 的三个顶点为圆心,以边长为半径画弧, 得到的封闭图形是莱洛三角形,若 AB=2,则莱洛三角形的面积(即阴影部分面积)为( ) A. B. C.2 D.2 【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边 三角形的面积,分别求出即可. 变式 2:(2017 湖北宜昌)阅读:能够成为直角三角形三条边长的三个正整数 a,b,c,称为勾股数.世界上 第一次给出勾股数通解公式的是我国古代数学著作《九章算术》,其勾股数组公式为: 其 中 m>n>0,m,n 是互质的奇数. 应用:当 n=1 时,求有一边长为 5 的直角三角形的另外两条边长. 【考点】KT:勾股数;KQ:勾股定理. 【分析】由 n=1,得到 a= (m2﹣1)①,b=m②,c= (m2+1)③,根据直角三角形有一边长为 5,列方程 即可得到结论. 【解答】解:当 n=1,a= (m2﹣1)①,b=m②,c= (m2+1)③, ∵直角三角形有一边长为 5, ∴Ⅰ、当 a=5 时, (m2﹣1)=5,解得:m= (舍去), Ⅱ、当 b=5 时,即 m=5,代入①③得,a=12,c=13, Ⅲ、当 c=5 时, (m2+1)=5,解得:m=±3, ∵m>0, ∴m=3,代入①②得,a=4,b=3, 综上所述,直角三角形的另外两条边长分别为 12,13 或 3,4.学科&网 变式 3:(2017 江西)钓鱼岛自古就是中国的!2017 年 5 月 18 日,中国海警 2305,2308,2166,33115 舰 船队在中国的钓鱼岛领海内巡航,如图,我军以 30km/h 的速度在钓鱼岛 A 附近进行合法巡逻,当巡逻舰行 驶到 B 处时,战士发现 A 在他的东北方向,巡逻舰继续向北航行 40 分钟后到达点 C,发现 A 在他的东偏北 15°方向,求此时巡逻舰与钓鱼岛的距离( ≈1.414,结果精确到 0.01) 变式 4:(2017•北京)数学家吴文俊院士非常重视古代数学家贾宪提出的“从长方形对角线上任一点作两条 分别平行于两邻边的直线,则所容两长方形面积相等(如图所示)”这一推论,他从这一推论出发,利用 “出入相补”原理复原了《海岛算经》九题古证. (以上材料来源于《古证复原的原理》、《吴文俊与中国数学》和《古代世界数学泰斗刘徽》) 请根据该图完成这个推论的证明过程. 证明:S 矩形 NFGD=S△ADC﹣(S△ANF+S△FGC),S 矩形 EBMF=S△ABC﹣( S△AEF + S△FCM ). 易知,S△ADC=S△ABC, S△ANF = S△AEF , S△FGC = S△FMC . 可得 S 矩形 NFGD=S 矩形 EBMF. 【考点】LB:矩形的性质. 变式 5:(2017 湖北随州)风电已成为我国继煤电、水电之后的第三大电源,风电机组主要由塔杆和叶片组 成(如图 1),图 2 是从图 1 引出的平面图.假设你站在 A 处测得塔杆顶端 C 的仰角是 55°,沿 HA 方向水 平前进 43 米到达山底 G 处,在山顶 B 处发现正好一叶片到达最高位置,此时测得叶片的顶端 D(D、C、H 在同一直线上)的仰角是 45°.已知叶片的长度为 35 米(塔杆与叶片连接处的长度忽略不计),山高 BG 为 10 米,BG⊥HG,CH⊥AH,求塔杆 CH 的高.(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8,sin35° ≈0.6) 【考点】TA:解直角三角形的应用﹣仰角俯角问题. 【分析】作 BE⊥DH,知 GH=BE、BG=EH=10,设 AH=x,则 BE=GH=43+x,由 CH=AHtan∠CAH=tan55°•x 知 CE=CH﹣EH=tan55°•x﹣10,根据 BE=DE 可得关于 x 的方程,解之可得. 【解答】解:如图,作 BE⊥DH 于点 E,

资料: 3.2万

进入主页

人气:

10000+的老师在这里下载备课资料