圆柱的体积
汝阳县第二实验小学
胡玉环
苏教版六年级下册
你能求出这些圆柱体的体积吗?
甲 乙
谁的体积大?
谁的体积大?
圆柱的体积
底面积 高
长方体、正方体和圆柱的底面积
相等,高也相等。
1、长方体和正方体的体积相等吗?
为什么?
2、猜一猜,圆柱得体积与长方体、
正方体的体积相等吗?
学过的立体图形?转化
验证
S = π r 2
思考:
1、转化的过程中,什么没变,什
么变了?
2、转化后的图形和转化前的圆柱
之间有什么关系?
3、怎样计算圆柱的体积?
把圆柱的底面平均分的份数越多,切拼成的
立体图形越接近( ) 。长方体
思考:
1、转化的过程中,什么没变,什
么变了?
2、转化后的图形和转化前的圆柱
之间有什么关系?
3、怎样计算圆柱的体积?
高长方体的体积
圆柱的体积 = 底面积 × 高 √
底面积 ×=
V=Sh
V=Sh
V=∏r2h
圆柱的体积
已知r和h
1、王叔叔的水杯是圆柱形,底面积
是30平方厘米,高是26厘米,水杯
的体积是( )立方厘米。
2 、一种圆柱形木料,底面半径10
厘米,高50厘米,这根木料的体积
是多少?
3 、工地所用水桶是圆柱形,高16分
米,底面周长3.14米。它能装水多少
立方米?
4 、工地桥墩所用钢材是圆柱形,
体积是10.8立方米,高6米。它的
底面积是多少平方米?
思考:要测量每个桥墩的体积,测量哪
些数据比较方便?
长方体体积公式
圆柱体积公式
计算长方体、正方体、圆柱的
体积都可以用底面积乘高。
回顾圆柱体积公式的探索过
程, 你有什么体会?
回顾
反思
方法
类似
转化
转化
“没有大胆的猜测,就做不出
伟大的发现。”
——牛顿
牛顿从苹果落地开始猜想,发现了万有引力定
律,是17世纪自然科学最伟大的成果之一。从此
人类才开始了对宇宙的探索。