2017-2018学年七年级上数学期末检测题(北京市海淀区含答案解析)
加入VIP免费下载

本文件来自资料包: 《2017-2018学年七年级上数学期末检测题(北京市海淀区含答案解析)》 共有 2 个子文件,压缩包列表如下:

注:压缩包层级关系提取自源文件,您看到的所有资料结构都和您下载的源文件一致

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎2017-2018学年北京市海淀区七年级(上)期末数学试卷 一、选择题(每小题3分,共30分)第1~10题均有四个选项,符合题意的选项只有一个.‎ ‎1.﹣5的相反数是(  )‎ A. B.﹣ C.5 D.﹣5‎ ‎2.‎10月18日上午9时,中国共产党第十九次全国代表大会在京开幕,网站PC端成为报道大会的主阵地.据统计,关键词“十九大”在1.3万个网站中产生数据174000条,其中174000用科学记数法表示为(  )‎ A.17.4×105 B.1.74×‎105 ‎C.17.4×104 D.1.74×106‎ ‎3.下列各式中,不相等的是(  )‎ A.(﹣3)2和﹣32 B.(﹣3)2和‎32 ‎C.(﹣2)3和﹣23 D.|﹣2|3和|﹣23|‎ ‎4.下列是一元一次方程的是(  )‎ A.x2﹣2x﹣3=0 B.2x+y=‎5 ‎C. D.x+1=0‎ ‎5.如图,下列结论正确的是(  )‎ A.c>a>b B. C.|a|<|b| D.abc>0‎ ‎6.下列等式变形正确的是(  )‎ A.若﹣3x=5,则x=﹣ ‎ B.若,则2x+3(x﹣1)=1 ‎ C.若5x﹣6=2x+8,则5x+2x=8+6 ‎ D.若3(x+1)﹣2x=1,则3x+3﹣2x=1‎ ‎7.下列结论正确的是(  )‎ A.﹣3ab2和b‎2a是同类项 B.不是单项式 ‎ C.a比﹣a大 D.2是方程2x+1=4的解 ‎8.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是(  )‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 A. ‎ B. ‎ C. ‎ D.‎ ‎9.已知点A,B,C在同一条直线上,若线段AB=3,BC=2,AC=1,则下列判断正确的是(  )‎ A.点A在线段BC上 ‎ B.点B在线段AC上 ‎ C.点C在线段AB上 ‎ D.点A在线段CB的延长线上 ‎10.由m个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m能取到的最大值是(  )‎ A.6 B.‎5 ‎C.4 D.3‎ 二、填空题(每小题2分,共16分)‎ ‎11.计算:48°37'+53°35'=   .‎ ‎12.小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元则小何共花费   元.(用含a,b的代数式表示)‎ ‎13.已知|a﹣2|+(b+3)2=0,则ba的值等于   .‎ ‎14.北京西站和北京南站是北京的两个铁路客运中心,如图,A,B,C分别表示天安门、北京西站、北京南站,‎ 经测量,北京西站在天安门的南偏西77°方向,北京南站在天安门的南偏西18°‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 方向.则∠BAC=   °.‎ ‎15.若2是关于x的一元一次方程2(x﹣1)=ax的解,则a=   .‎ ‎16.规定图形表示运算a﹣b﹣c,图形表示运算x﹣z﹣y+w.则+=   (直接写出答案).‎ ‎17.线段AB=6,点C在直线AB上,BC=4,则AC的长度为   .‎ ‎18.在某多媒体电子杂志的某一期上刊登了“正方形雪花图案的形成”的演示案例:作一个正方形,设每边长为‎4a,将每边四等分,作一凸一凹的两个边长为a的小正方形,得到图形如图(2)所示,称为第一次变化,再对图(2)的每个边做相同的变化,得到图形如图(3),称为第二次变化.如此连续作几次,便可得到一个绚丽多彩的雪花图案.如不断发展下去到第n次变化时,图形的面积是否会变化,   (填写“会”或者“不会”),图形的周长为   .‎ 三、解答题(本题共54分,第19,20题每题6分,第21题4分,第22~25题每题6分,第26,27题每题7分)‎ ‎19.计算:‎ ‎(1)(﹣)×(﹣8)+(﹣6)2;‎ ‎(2)﹣14+(﹣2).‎ ‎20.解方程:‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(1)3(2x﹣1)=15;‎ ‎(2).‎ ‎21.已知‎3a﹣7b=﹣3,求代数式2(‎2a+b﹣1)+5(a﹣4b)﹣3b的值.‎ ‎22.作图题:‎ 如图,已知点A,点B,直线l及l上一点M.‎ ‎(1)连接MA,并在直线l上作出一点N,使得点N在点M的左边,且满足MN=MA;‎ ‎(2)请在直线l上确定一点O,使点O到点A与点O到点B的距离之和最短,并写出画图的依据.‎ ‎23.几何计算:‎ 如图,已知∠AOB=40°,∠BOC=3∠AOB,OD平分∠AOC,求∠COD的度数.‎ 解:因为∠BOC=3∠AOB,∠AOB=40°‎ 所以∠BOC=   °‎ 所以∠AOC=   +   =   °+   °=   °‎ 因为OD平分∠AOC 所以∠COD=   =   °.‎ ‎24.如图1,线段AB=10,点C,E,F在线段AB上.‎ ‎(1)如图2,当点E,点F是线段AC和线段BC的中点时,求线段EF的长;‎ ‎(2)当点E,点F是线段AB和线段BC的中点时,请你写出线段EF与线段AC之间的数量关系并简要说明理由.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎25.先阅读,然后答题.‎ 阿基米德测皇冠的故事 叙古拉国王艾希罗交给金匠一块黄金,让他做一顶王冠.王冠做成后,国王拿在手里觉得有点轻.他怀疑金匠掺了假,可是金匠以脑袋担保说没有,并当面拿秤来称,结果与原来的金块一样重.国王还是有些怀疑,可他又拿不出证据,于是把阿基米德叫来,要他来解决这个难题.回家后,阿基米德闭门谢客,冥思苦想,但百思不得其解.一天,他的夫人逼他洗澡.当他跳入池中时,水从池中溢了出来.阿基米德听到那哗哗哗的流水声,灵感一下子冒了出来.他从池中跳出来,连衣服都没穿,就冲到街上,高喊着:“优勒加!优勒加!(意为发现了)“.夫人这回可真着急了,嘴里嘟囔着“真疯了,真疯了“,便随后追了出去.街上的人不知发生了什么事,也都跟在后面追着看.原来,阿基米德由澡盆溢水找到了解决王冠问题的办法:相同质量的相同物质泡在水里,溢出的水的体积应该相同.如果把王冠放到水了,溢出的水的体积应该与相同质量的金块的体积相同,否则王冠里肯定掺有假.阿基为德跑到王宫后立即找来一盆水,又找来同样重量的一块黄金,一块白银,分两次泡进盆里,白银溢出的水比黄金溢出的几乎要多一倍,然后他又把王冠和金块分别泡进水盆里,王冠溢出的水比金块多,显然王冠的质量不等于金块的质量,王冠里肯定掺了假.在铁的事实面前,金匠不得不低头承认,王冠里确实掺了白银.烦人的王冠之谜终于解开了.‎ 小明受阿基米德测皇冠的故事的启发,想要做以下的一个探究:‎ 小明准备了一个长方体的无盖容器和A,B两种型号的钢球若干.先往容器里加入一定量的水,如图,水高度为‎30mm,水足以淹没所有的钢球.‎ 探究一:小明做了两次实验,先放入3个A型号钢球,水面的高度涨到‎36mm;把3个A型号钢球捞出,再放入2个B型号钢球,水面的高度恰好也涨到‎36mm.‎ 由此可知A型号与B型号钢球的体积比为   ;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 探究二:小明把之前的钢球全部捞出,然后再放入A型号与B型号钢球共10个后,水面高度涨到‎57mm,问放入水中的A型号与B型号钢球各几个?‎ ‎26.对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).我们规定:‎ ‎(a,b)★(c,d)=bc﹣ad.‎ 例如:(1,2)★(3,4)=2×3﹣1×4=2.‎ 根据上述规定解决下列问题:‎ ‎(1)有理数对(2,﹣3)★(3,﹣2)=   ;‎ ‎(2)若有理数对(﹣3,2x﹣1)★(1,x+1)=7,则x=   ;‎ ‎(3)当满足等式(﹣3,2x﹣1)★(k,x+k)=5+2k的x是整数时,求整数k的值.‎ ‎27.如图1,在数轴上A,B两点对应的数分别是6,﹣6,∠DCE=90°(C与O重合,D点在数轴的正半轴上)‎ ‎(1)如图1,若CF平分∠ACE,则∠AOF=   ;‎ ‎(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α.‎ ‎①当t=1时,α=   ;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎②猜想∠BCE和α的数量关系,并证明;‎ ‎(3)如图3,开始∠D‎1C1E1与∠DCE重合,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D‎1C1E1沿数轴的负半轴向左平移t(0<t<3)个单位,再绕点顶点C1顺时针旋转30t度,作C‎1F1平分∠AC1E1,记∠D‎1C1F1=β,若α与β满足|α﹣β|=20°,请直接写出t的值为   .‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎2017-2018学年北京市海淀区七年级(上)期末数学试卷 参考答案与试题解析 一、选择题(每小题3分,共30分)第1~10题均有四个选项,符合题意的选项只有一个.‎ ‎1.﹣5的相反数是(  )‎ A. B.﹣ C.5 D.﹣5‎ ‎【分析】依据相反数的定义求解即可.‎ ‎【解答】解:﹣5的相反数是5.‎ 故选:C.‎ ‎【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.‎ ‎2.‎10月18日上午9时,中国共产党第十九次全国代表大会在京开幕,网站PC端成为报道大会的主阵地.据统计,关键词“十九大”在1.3万个网站中产生数据174000条,其中174000用科学记数法表示为(  )‎ A.17.4×105 B.1.74×‎105 ‎C.17.4×104 D.1.74×106‎ ‎【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.‎ ‎【解答】解:174000用科学记数法表示为1.74×105,‎ 故选:B.‎ ‎【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.‎ ‎3.下列各式中,不相等的是(  )‎ A.(﹣3)2和﹣32 B.(﹣3)2和‎32 ‎C.(﹣2)3和﹣23 D.|﹣2|3和|﹣23|‎ ‎【分析】根据有理数的乘方、绝对值和负整数指数幂的知识点进行解答,即可判断.‎ ‎【解答】解:A、(﹣3)2=9,﹣32=﹣9,故(﹣3)2≠﹣32;‎ B、(﹣3)2=9,32=9,故(﹣3)2=32;‎ C、(﹣2)3=﹣8,﹣23=﹣8,则(﹣2)3=﹣23;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 D、|﹣2|3=23=8,|﹣23|=|﹣8|=8,则|﹣2|3=|﹣23|.‎ 故选:A.‎ ‎【点评】此题确定底数是关键,要特别注意﹣32和(﹣3)2的区别.‎ ‎4.下列是一元一次方程的是(  )‎ A.x2﹣2x﹣3=0 B.2x+y=‎5 ‎C. D.x+1=0‎ ‎【分析】根据只含有一个未知数(元),且未知数的次数是1,这样的方程叫一元一次方程可得答案.‎ ‎【解答】解:A、不是一元一次方程,故此选项错误;‎ B、不是一元一次方程,故此选项错误;‎ C、不是一元一次方程,故此选项错误;‎ D、是一元一次方程,故此选项正确;‎ 故选:D.‎ ‎【点评】此题主要考查了一元一次方程定义,关键是掌握一元指方程仅含有一个未知数,一次指未知数的次数为1,且未知数的系数不为0.‎ ‎5.如图,下列结论正确的是(  )‎ A.c>a>b B. C.|a|<|b| D.abc>0‎ ‎【分析】A、根据数轴上的数右边的总比左边的大,可得结论;‎ B、根据0<b<1<c,可得结论;‎ C、根据数轴上数a表示的点离原点比较远,可得|a|>|b|;‎ D、根据a<0,b>0,c>0,可得结论.‎ ‎【解答】解:A、由数轴得:a<b<c,故选项A不正确;‎ B、∵0<b<1<c,‎ ‎∴>,‎ 故选项B正确;‎ C、由数轴得:|a|>|b|,‎ 故选项C不正确;‎ D、∵a<0,b>0,c>0,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴abc<0,‎ 故选项D不正确;‎ 故选:B.‎ ‎【点评】本题考查了数轴的意义、绝对值的定义及有理数的乘法法则,熟练掌握数轴的有关性质是关键.‎ ‎6.下列等式变形正确的是(  )‎ A.若﹣3x=5,则x=﹣ ‎ B.若,则2x+3(x﹣1)=1 ‎ C.若5x﹣6=2x+8,则5x+2x=8+6 ‎ D.若3(x+1)﹣2x=1,则3x+3﹣2x=1‎ ‎【分析】根据等式的基本性质1:等式的两边都加上或者减去同一个数或同一个整式,所得结果仍是等式;等式性质2:等式的两边都乘以或者除以同一个数(除数不为零),所得结果仍是等式,针对每一个选项进行判断即可解决.‎ ‎【解答】解:A、若﹣3x=5,则x=﹣,错误;‎ B、若,则2x+3(x﹣1)=6,错误;‎ C、若5x﹣6=2x+8,则5x﹣2x=8+6,错误;‎ D、若3(x+1)﹣2x=1,则3x+3﹣2x=1,正确;‎ 故选:D.‎ ‎【点评】此题主要考查了等式的性质,关键是熟练掌握等式的性质定理.‎ ‎7.下列结论正确的是(  )‎ A.﹣3ab2和b‎2a是同类项 B.不是单项式 ‎ C.a比﹣a大 D.2是方程2x+1=4的解 ‎【分析】根据同类项、单项式、有理数的大小比较、一元一次方程的解逐个判断即可.‎ ‎【解答】解:A、﹣3ab2和b‎2a是同类项,故本选项符合题意;‎ B、是单项式,故本选项不符合题意;‎ C、当a=0时,a=﹣a,故本选项不符合题意;‎ D、1.5是方程2x+1=4的解,2不是方程的解,故本选项不符合题意;‎ 故选:A.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【点评】本题考查了同类项、单项式、有理数的大小比较、一元一次方程的解,能熟记知识点的内容是解此题的关键.‎ ‎8.将一副三角板按如图所示位置摆放,其中∠α与∠β一定互余的是(  )‎ A. ‎ B. ‎ C. ‎ D.‎ ‎【分析】根据图形,结合互余的定义判断即可.‎ ‎【解答】解:A、∠α与∠β不互余,故本选项错误;‎ B、∠α与∠β不互余,故本选项错误;‎ C、∠α与∠β互余,故本选项正确;‎ D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;‎ 故选:C.‎ ‎【点评】本题考查了对余角和补角的应用,主要考查学生的观察图形的能力和理解能力.‎ ‎9.已知点A,B,C在同一条直线上,若线段AB=3,BC=2,AC=1,则下列判断正确的是(  )‎ A.点A在线段BC上 ‎ B.点B在线段AC上 ‎ C.点C在线段AB上 ‎ D.点A在线段CB的延长线上 ‎【分析】依据点A,B,C在同一条直线上,线段AB=3,BC=2,AC=1,即可得到点C在线段AB上.‎ ‎【解答】解:如图,∵点A,B,C在同一条直线上,线段AB=3,BC=2,AC=1,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎∴点A在线段BC的延长线上,故A错误;‎ 点B在线段AC延长线上,故B错误;‎ 点C在线段AB上,故C正确;‎ 点A在线段CB的反向延长线上,故D错误;‎ 故选:C.‎ ‎【点评】本题主要考查了两点间的距离,解决问题的关键是判段点C的位置在线段AB上.‎ ‎10.由m个相同的正方体组成一个立体图形,下面的图形分别是从正面和上面看它得到的平面图形,则m能取到的最大值是(  )‎ A.6 B.‎5 ‎C.4 D.3‎ ‎【分析】从俯视图中可以看出最底层小正方体的个数及形状,从主视图可以看出每一层小正方体的层数和个数,从而算出总的个数.‎ ‎【解答】解:由题中所给出的主视图知物体共两列,且左侧一列高一层,右侧一列最高两层;‎ 由俯视图可知左侧一行,右侧两行,于是,可确定左侧只有一个小正方体,而右侧可能是一行单层一行两层,出可能两行都是两层.‎ 所以图中的小正方体最少4块,最多5块.‎ 故选:B.‎ ‎【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.‎ 二、填空题(每小题2分,共16分)‎ ‎11.计算:48°37'+53°35'= 102°12' .‎ ‎【分析】1度=60分,即1°=60′,1分=60秒,即1′=60″,依据度分秒的换算即可得到结果.‎ ‎【解答】解:48°37'+53°35'=101°72'=102°12',‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 故答案为:102°12'.‎ ‎【点评】本题主要考查了度分秒的换算,在进行度、分、秒的运算时也应注意借位和进位的方法.‎ ‎12.小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元则小何共花费 (‎4a+10b) 元.(用含a,b的代数式表示)‎ ‎【分析】根据单价×数量=总费用进行解答.‎ ‎【解答】解:依题意得:‎4a+10b;‎ 故答案是:(‎4a+10b).‎ ‎【点评】本题考查列代数式.解题的关键是读懂题意,找到题目相关条件间的数量关系.‎ ‎13.已知|a﹣2|+(b+3)2=0,则ba的值等于 9 .‎ ‎【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为‎0”‎解出a、b的值,再代入原式中即可.‎ ‎【解答】解:依题意得:a﹣2=0,b+3=0,‎ ‎∴a=2,b=﹣3.‎ ‎∴ba=(﹣3)2=9.‎ ‎【点评】本题考查了非负数的性质,初中阶段有三种类型的非负数:‎ ‎(1)绝对值;‎ ‎(2)偶次方;‎ ‎(3)二次根式(算术平方根).‎ 当它们相加和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类题目.‎ ‎14.北京西站和北京南站是北京的两个铁路客运中心,如图,A,B,C分别表示天安门、北京西站、北京南站,‎ 经测量,北京西站在天安门的南偏西77°方向,北京南站在天安门的南偏西18°方向.则∠BAC= 59 °.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【分析】根据题意可得∠CAS=18°,∠BAS=77°,然后利用角的和差关系可得答案.‎ ‎【解答】解:∠BAC=77°﹣18°=59°,‎ 故答案为:59.‎ ‎【点评】此题主要考查了方向角,方向角是从正北或正南方向到目标方向所形成的小于90°的角.‎ ‎15.若2是关于x的一元一次方程2(x﹣1)=ax的解,则a= 1 .‎ ‎【分析】根据一元一次方程的解的定义列出方程,解方程即可.‎ ‎【解答】解:∵2是关于x的一元一次方程2(x﹣1)=ax的解,‎ ‎∴‎2a=2,‎ 解得,a=1,‎ 故答案为:1.‎ ‎【点评】本题考查的是方程的解的定义,使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.‎ ‎16.规定图形表示运算a﹣b﹣c,图形表示运算x﹣z﹣y+w.则+= ﹣8 (直接写出答案).‎ ‎【分析】原式利用已知的新定义计算即可求出值.‎ ‎【解答】解:根据题中的新定义得:原式=(1﹣2﹣3)+(4﹣6﹣7+5)=﹣4﹣4=﹣‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎8,‎ 故答案为:﹣8‎ ‎【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.‎ ‎17.线段AB=6,点C在直线AB上,BC=4,则AC的长度为 2或10 .‎ ‎【分析】分类讨论:C在线段AB上,C在线段AB的延长线上,根据线段的和差,可得答案.‎ ‎【解答】解:当C在线段AB上时,AC=1B﹣BC=6﹣4=2;‎ 当C在线段AB的延长线上时,AC=AB+BC=10.‎ 综上所述:AC的长度为2或10.‎ 故选:2或10.‎ ‎【点评】本题考查了两点间的距离,利用线段的和差是解题关键,要分类讨论,以防遗漏.‎ ‎18.在某多媒体电子杂志的某一期上刊登了“正方形雪花图案的形成”的演示案例:作一个正方形,设每边长为‎4a,将每边四等分,作一凸一凹的两个边长为a的小正方形,得到图形如图(2)所示,称为第一次变化,再对图(2)的每个边做相同的变化,得到图形如图(3),称为第二次变化.如此连续作几次,便可得到一个绚丽多彩的雪花图案.如不断发展下去到第n次变化时,图形的面积是否会变化, 不会 (填写“会”或者“不会”),图形的周长为 2n+‎4a .‎ ‎【分析】观察图形,发现对正方形每进行1次分形,周长增加1倍;每增加一个小正方形同时又减少一个相同的小正方形,即面积不变.‎ ‎【解答】解:周长依次为‎16a,‎32a,‎64a,‎128a,…,2n+‎4a,即无限增加,‎ 所以不断发展下去到第n次变化时,图形的周长为2n+‎4a;‎ 图形进行分形时,每增加一个小正方形同时又减少一个相同的小正方形,即面积不变,是一个定值‎16a2.‎ 故答案为:不会、2n+‎4a.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎【点评】此题考查了图形的变化类,主要培养学生的观察能力和概括能力,观察出后一个图形的周长比它的前一个增加1倍是解题的关键,本题有一定难度.‎ 三、解答题(本题共54分,第19,20题每题6分,第21题4分,第22~25题每题6分,第26,27题每题7分)‎ ‎19.计算:‎ ‎(1)(﹣)×(﹣8)+(﹣6)2;‎ ‎(2)﹣14+(﹣2).‎ ‎【分析】(1)根据有理数的乘法和加法可以解答本题;‎ ‎(2)根据幂的乘方、有理数的除法和减法可以解答本题.‎ ‎【解答】解:(1)(﹣)×(﹣8)+(﹣6)2‎ ‎=4+36‎ ‎=40;‎ ‎(2)﹣14+(﹣2)‎ ‎=﹣1+2×3﹣9‎ ‎=﹣1+6﹣9‎ ‎=﹣4.‎ ‎【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.‎ ‎20.解方程:‎ ‎(1)3(2x﹣1)=15;‎ ‎(2).‎ ‎【分析】(1)根据一元一次方程的解法,去括号,移项,合并同类项,系数化为1即可;‎ ‎(2)这是一个带分母的方程,所以要先去分母,再去括号,最后移项,合并同类项,系数化为1,从而得到方程的解.‎ ‎【解答】解:(1)去括号得,6x﹣3=15,‎ 移项得,6x=15+3,‎ 合并同类项得,6x=18,‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 系数化为1得,x=3;‎ ‎(2)去分母得,2(x﹣7)﹣3(1+x)=6,‎ 去括号得,2x﹣14﹣3﹣3x=6,‎ 移项得,2x﹣3x=6+14+3,‎ 合并同类项得,﹣x=23,‎ 系数化为1得,x=﹣23.‎ ‎【点评】本题主要考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.‎ ‎21.已知‎3a﹣7b=﹣3,求代数式2(‎2a+b﹣1)+5(a﹣4b)﹣3b的值.‎ ‎【分析】根据整式的运算法则即可求出答案.‎ ‎【解答】解:当‎3a﹣7b=﹣3时,‎ 原式=‎4a+2b﹣2+‎5a﹣20b﹣3b ‎=‎9a﹣21b﹣2‎ ‎=3(‎3a﹣7b)﹣2‎ ‎=﹣9﹣2‎ ‎=﹣11‎ ‎【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.‎ ‎22.作图题:‎ 如图,已知点A,点B,直线l及l上一点M.‎ ‎(1)连接MA,并在直线l上作出一点N,使得点N在点M的左边,且满足MN=MA;‎ ‎(2)请在直线l上确定一点O,使点O到点A与点O到点B的距离之和最短,并写出画图的依据.‎ ‎【分析】(1)连接AM,以M为圆心,MA为半径画弧交直线l于N,点N即为所求;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(2)连接AB交直线l于点O,点O即为所求;‎ ‎【解答】解:(1)作图如图1所示:‎ ‎(2)作图如图2所示:作图依据是:两点之间线段最短.‎ ‎【点评】本题考查作图﹣复杂作图,两点之间线段最短等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.‎ ‎23.几何计算:‎ 如图,已知∠AOB=40°,∠BOC=3∠AOB,OD平分∠AOC,求∠COD的度数.‎ 解:因为∠BOC=3∠AOB,∠AOB=40°‎ 所以∠BOC= 120 °‎ 所以∠AOC= ∠AOB + ∠BOC = 40 °+ 120 °= 160 °‎ 因为OD平分∠AOC 所以∠COD= ∠AOC = 80 °.‎ ‎【分析】先求出∠BOC的度数,再求出∠AOC的度数,根据角平分线定义求出即可.‎ ‎【解答】解:∵∠BOC=3∠AOB,∠AOB=40°,‎ ‎∴∠BOC=120°,‎ ‎∴∠AOC=∠AOB+∠BOC=40°+120°=160°,‎ ‎∵OD平分∠AOC,‎ ‎∴∠COD=∠AOC==80°,‎ 故答案为:120,∠AOB,∠BOC,40,120,160,∠AOC,80.‎ ‎【点评】本题考查了角平分线定义和角的有关计算,能求出∠AOC的度数和得出∠COD 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎=∠AOC是解此题的关键.‎ ‎24.如图1,线段AB=10,点C,E,F在线段AB上.‎ ‎(1)如图2,当点E,点F是线段AC和线段BC的中点时,求线段EF的长;‎ ‎(2)当点E,点F是线段AB和线段BC的中点时,请你写出线段EF与线段AC之间的数量关系并简要说明理由.‎ ‎【分析】(1)根据线段的中点得出AE=CE=AC,CF=FB=CB,求出EF=AB,代入求出即可;‎ ‎(2)根据线段的中点得出AE=CE=AC,CF=FB=CB,即可求出EF=AC.‎ ‎【解答】解:(1)∵当点E、点F是线段AC和线段BC的中点,‎ ‎∴AE=CE=AC,CF=FB=CB,‎ ‎∵AB=10,‎ ‎∴EF=CE+CF=AC+CB=(AC+CB)=AB=10=5;‎ ‎(2)如图:EF=AC,‎ 理由是:∵当点E、点F是线段AB和线段BC的中点,‎ ‎∴AE=EB=AB,CF=FB=CB,‎ ‎∴EF=EB﹣FB=AB﹣CB=(AB﹣CB)=AC.‎ ‎【点评】本题考查了求两点之间的距离和线段的中点,能根据线段的中点定义得出AE=EB=AB和CF=FB=CB是解此题的关键.‎ ‎25.先阅读,然后答题.‎ 阿基米德测皇冠的故事 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 叙古拉国王艾希罗交给金匠一块黄金,让他做一顶王冠.王冠做成后,国王拿在手里觉得有点轻.他怀疑金匠掺了假,可是金匠以脑袋担保说没有,并当面拿秤来称,结果与原来的金块一样重.国王还是有些怀疑,可他又拿不出证据,于是把阿基米德叫来,要他来解决这个难题.回家后,阿基米德闭门谢客,冥思苦想,但百思不得其解.一天,他的夫人逼他洗澡.当他跳入池中时,水从池中溢了出来.阿基米德听到那哗哗哗的流水声,灵感一下子冒了出来.他从池中跳出来,连衣服都没穿,就冲到街上,高喊着:“优勒加!优勒加!(意为发现了)“.夫人这回可真着急了,嘴里嘟囔着“真疯了,真疯了“,便随后追了出去.街上的人不知发生了什么事,也都跟在后面追着看.原来,阿基米德由澡盆溢水找到了解决王冠问题的办法:相同质量的相同物质泡在水里,溢出的水的体积应该相同.如果把王冠放到水了,溢出的水的体积应该与相同质量的金块的体积相同,否则王冠里肯定掺有假.阿基为德跑到王宫后立即找来一盆水,又找来同样重量的一块黄金,一块白银,分两次泡进盆里,白银溢出的水比黄金溢出的几乎要多一倍,然后他又把王冠和金块分别泡进水盆里,王冠溢出的水比金块多,显然王冠的质量不等于金块的质量,王冠里肯定掺了假.在铁的事实面前,金匠不得不低头承认,王冠里确实掺了白银.烦人的王冠之谜终于解开了.‎ 小明受阿基米德测皇冠的故事的启发,想要做以下的一个探究:‎ 小明准备了一个长方体的无盖容器和A,B两种型号的钢球若干.先往容器里加入一定量的水,如图,水高度为‎30mm,水足以淹没所有的钢球.‎ 探究一:小明做了两次实验,先放入3个A型号钢球,水面的高度涨到‎36mm;把3个A型号钢球捞出,再放入2个B型号钢球,水面的高度恰好也涨到‎36mm.‎ 由此可知A型号与B型号钢球的体积比为 2:3 ;‎ 探究二:小明把之前的钢球全部捞出,然后再放入A型号与B型号钢球共10个后,水面高度涨到‎57mm,问放入水中的A型号与B型号钢球各几个?‎ ‎【分析】探究一:依据3个A型号钢球与2个B型号钢球的体积相等,即可得到A型号与B型号钢球的体积比为2:3;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 探究二:设放入水中的A型号钢球为x个,则B型号钢球为(10﹣x)个,则由放入A型号与B型号钢球共10个后,水面高度涨到‎57mm,可得方程,进而得出结论.‎ ‎【解答】解:探究一:‎ 由题可得,3个A型号钢球与2个B型号钢球的体积相等,‎ ‎∴A型号与B型号钢球的体积比为2:3;‎ 故答案为:2:3;‎ 探究二:‎ 每个A型号钢球使得水面上升(36﹣30)=‎2 mm,‎ 每个B型号钢球使得水面上升(36﹣30)=‎3mm,‎ 设放入水中的A型号钢球为x个,则B型号钢球为(10﹣x)个,则由题意列方程:‎ ‎2x+3(10﹣x)=57﹣30,‎ 解得:x=3,‎ 所以10﹣x=7,‎ 答:放入水中的A型号钢球3个,B型号钢球7个.‎ ‎【点评】本题主要考查了一元一次方程的应用,解决问题的关键是依据等量关系列方程求解.‎ ‎26.对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).我们规定:‎ ‎(a,b)★(c,d)=bc﹣ad.‎ 例如:(1,2)★(3,4)=2×3﹣1×4=2.‎ 根据上述规定解决下列问题:‎ ‎(1)有理数对(2,﹣3)★(3,﹣2)= ﹣5 ;‎ ‎(2)若有理数对(﹣3,2x﹣1)★(1,x+1)=7,则x= 1 ;‎ ‎(3)当满足等式(﹣3,2x﹣1)★(k,x+k)=5+2k的x是整数时,求整数k的值.‎ ‎【分析】(1)原式利用题中的新定义计算即可求出值;‎ ‎(2)原式利用题中的新定义计算即可求出x的值;‎ ‎(3)原式利用题中的新定义计算,求出整数k的值即可.‎ ‎【解答】解:(1)根据题意得:原式=﹣9+4=﹣5;‎ 故答案为:﹣5;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(2)根据题意化简得:2x﹣1+3x+3=7,‎ 移项合并得:5x=5,‎ 解得:x=1; ‎ 故答案为:1; ‎ ‎(3)∵等式(﹣3,2x﹣1)★(k,x+k)=5+2k的x是整数,‎ ‎∴(2x﹣1)k﹣(﹣3)(x+k)=5+2k,‎ ‎∴(2k+3)x=5,‎ ‎∴x=,‎ ‎∵k是整数,‎ ‎∴2k+3=±1或±5,‎ ‎∴k=1,﹣1,﹣2,﹣4.‎ ‎【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.‎ ‎27.如图1,在数轴上A,B两点对应的数分别是6,﹣6,∠DCE=90°(C与O重合,D点在数轴的正半轴上)‎ ‎(1)如图1,若CF平分∠ACE,则∠AOF= 45° ;‎ ‎(2)如图2,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位后,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α.‎ ‎①当t=1时,α= 30° ;‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎②猜想∠BCE和α的数量关系,并证明;‎ ‎(3)如图3,开始∠D‎1C1E1与∠DCE重合,将∠DCE沿数轴的正半轴向右平移t(0<t<3)个单位,再绕点顶点C逆时针旋转30t度,作CF平分∠ACE,此时记∠DCF=α,与此同时,将∠D‎1C1E1沿数轴的负半轴向左平移t(0<t<3)个单位,再绕点顶点C1顺时针旋转30t度,作C‎1F1平分∠AC1E1,记∠D‎1C1F1=β,若α与β满足|α﹣β|=20°,请直接写出t的值为  .‎ ‎【分析】(1)根据角平分线的定义计算即可;‎ ‎(2)①根据∠FCD=∠ACF﹣∠ACD,求出∠ACF,∠ACD即可;‎ ‎②猜想:∠BCE=2α.根据∠BCE=∠AOB﹣∠ECD﹣∠ACD计算即可;‎ ‎(3)求出α,β(用t表示),构建方程即可解决问题;‎ ‎【解答】解:(1)如图1中,∵∠EOD=90°,OF平分∠EOD,‎ ‎∴∠FOD=∠EOD=45°,‎ 故答案为45°‎ ‎(2)①如图2中,当t=1时,∵∠DCA=30°,∠ECD=90°,‎ ‎∴∠ECA=120°,‎ ‎∵CF平分∠ACE,‎ ‎∴∠FCA=∠ECA=60°‎ ‎∴α=∠FCD=60°﹣30°=30°‎ 故答案为30°.‎ ‎②如图2中,猜想:∠BCE=2α.‎ 理由:∵∠DCE=90°,∠DCF=α,‎ ‎∴∠ECF=90°﹣α,‎ ‎∵CF平分∠ACE,‎ ‎∴∠ACF=∠ECF=90°﹣α,‎ ‎∵点A,O,B共线 ‎∴AOB=180°‎ ‎∴∠BCE=∠AOB﹣∠ECD﹣∠ACD=180°﹣90°﹣(90°﹣2α)=2α.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费 由莲山课件提供http://www.5ykj.com/ 资源全部免费 ‎(3)如图3中,由题意:α=∠FCA﹣∠DCA=(90°+30t)﹣30t=45°﹣15t,‎ β=∠AC1D1+∠AC‎1F1=30t+(90°﹣30t)=45°+15t,‎ ‎∵|β﹣α|=20°,‎ ‎∴|30t|=20°,‎ 解得t=.‎ 故答案为.‎ ‎【点评】本题考查角的计算、角平分线的定义、数轴、旋转变换等知识,解题的关键是熟练掌握角的和差定义,学会利用参数构建方程解决问题,属于中考填空题中的压轴题.‎ 由莲山课件提供http://www.5ykj.com/ 资源全部免费

资料: 7.8万

进入主页

人气:

10000+的老师在这里下载备课资料