由莲山课件提供http://www.5ykj.com/ 资源全部免费
第3课时 用“ASA”或“AAS”判定三角形全等
01 基础题
知识点1 用“ASA”判定三角形全等
1.如图,已知△ABC三条边、三个角,则甲、乙两个三角形中和△ABC全等的图形是(B)
A.甲 B.乙
C.甲和乙都是 D.都不是
2.(珠海中考)如图,EC=AC,∠BCE=∠DCA,∠A=∠E,求证:BC=DC.
证明:∵∠BCE=∠DCA,
∴∠BCE+∠ACE=∠DCA+∠ACE,
即∠BCA=∠DCE.
∵AC=EC,∠A=∠E,
∴△BCA≌△DCE(ASA).
∴BC=DC.
3.(孝感中考)如图,BD⊥AC于点D,CE⊥AB于点E,AD=AE.求证:BE=CD.
证明:∵BD⊥AC,CE⊥AB,
∴∠ADB=∠AEC=90°.
在△ABD和△ACE中,
∴△ABD≌△ACE(ASA).
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴AB=AC.
又∵AD=AE,
∴AB-AE=AC-AD,即BE=CD.
知识点2 用“AAS”判定三角形全等
4.如图所示,在△ABC中,∠B=∠C,D为BC的中点,过点D分别向AB、AC作垂线段,则能够说明△BDE≌△CDF的理由是(D)
A.SSS
B.SAS
C.ASA
D.AAS
5.(玉林中考)如图,AB=AE,∠1=∠2,∠C=∠D.求证:△ABC≌△AED.
证明:∵∠1=∠2,
∴∠1+∠EAC=∠2+∠EAC,
即∠BAC=∠EAD.
又∵∠C=∠D,AB=AE,
∴△ABC≌△AED(AAS).
6.(广西中考)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C.求证:AB=DC.
证明:∵BE=CF,
∴BF=CE.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
在△ABF和△DCE中,
∴△ABF≌△DCE(AAS).
∴AB=DC.
知识点3 三角形全等判定方法的选用
7.(南州中考)如图,点B,F,C,E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是(C)
A.AB=DE B.AC=DF
C.∠A=∠D D.BF=EC
8.(金华中考)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是(A)
A.AC=BD B.∠CAB=∠DBA
C.∠C=∠D D.BC=AD
02 中档题
9.如图所示,∠CAB=∠DBA,∠C=∠D,AC、BD相交于点E,下列结论不正确的是(B)
A.∠DAE=∠CBE
B.△DEA与△CEB不全等
C.CE=DE
D.EA=EB
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
10.如图所示,已知D是△ABC的边AB上一点,DF交AC于点E,DE=EF,FC∥AB,若BD=2,CF=5,则AB的长为(D)
A.1 B.3 C.5 D.7
11.(宜昌中考)杨阳同学沿一段笔直的人行道行走,在由A步行到达B处的过程中,通过隔离带的空隙O,刚好浏览完对面人行道宣传墙上的社会主义核心价值观标语,其具体信息如下:
如图,AB∥OH∥CD,相邻两平行线间的距离相等,AC,BD相交于O,OD⊥CD,垂足为D,已知AB=20 m,请根据上述信息求标语CD的长度.
解:∵AB∥CD,∴∠ABO=∠CDO.
∵OD⊥CD,∴∠CDO=90°.
∴∠ABO=90°,即OB⊥AB.
∵相邻两平行线间的距离相等,
∴OD=OB.
在△ABO和△CDO中,
∴△ABO≌△CDO(ASA).
∴CD=AB=20 m.
12.(邵阳中考)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.
(1)从图中任找两组全等三角形;
(2)从(1)中任选一组进行证明.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
解:(1)△ABE≌△CDF,△AFD≌△CEB(答案不唯一).
(2)选△ABE≌△CDF,
证明:∵AB∥CD,
∴∠BAE=∠DCF.
∵AF=CE,
∴AF+EF=CE+EF,即AE=CF.
在△ABE和△CDF中,
∴△ABE≌△CDF(AAS).
03 综合题
13.如图1所示,在△ABC中, ∠ACB=90°,AC=BC,过点C在△ABC外作直线MN,AM⊥MN于点M,BN⊥MN于点N.
(1)求证:MN=AM+BN;
(2)如图2,若过点C作直线MN与线段AB相交,AM⊥MN于点M,BN⊥MN于点N(AM>BN),(1)中的结论是否仍然成立?说明理由.
解:(1)证明:∵∠ACB=90°,
∴∠ACM+∠BCN=90°.
又∵AM⊥MN,BN⊥MN,
∴∠AMC=∠CNB=90°.
∴∠BCN+∠CBN=90°.
∴∠ACM=∠CBN.
在△ACM和△CBN中,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴△ACM≌△CBN(AAS).
∴MC=NB,MA=NC.
∵MN=MC+CN,
∴MN=AM+BN.
(2)(1)中的结论不成立,结论为MN=AM-BN.
理由:同(1)中证明可得△ACM≌△CBN,
∴CM=BN,AM=CN.
∵MN=CN-CM,
∴MN=AM-BN.
由莲山课件提供http://www.5ykj.com/ 资源全部免费