2018年七年级数学上3.1字母表示数课件教学设计随堂测(北师大版)
加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
第一节 字母表示数(1课时)‎ 教学目标 知识与技能 ‎1.经历探索规律并用字母表示规律的过程.‎ ‎2.能用字母表示以前学过的运算律和计算公式.‎ ‎3.体会字母表示数的意义,形成初步的符号感.‎ 过程与方法 ‎1.理解用字母表示规律的导出过程及本身所蕴涵的数学思想.‎ ‎2.懂得初步的推理思想.‎ ‎3.学会“观察一归纳”的思维方法.‎ 情感、态度与价值观 ‎1.初步感受从特殊到一般的思维方式,体验用矛盾转化的观点认识问题.‎ ‎2.培养严谨、认真、理论联系实际的科学态度与学风.‎ 重点难点 重点 理解字母表示数的意义.‎ 难点 探索规律的过程及用代数式表示规律的方法.‎ 教学流程 教学设计 一、护栏问题呼唤规律 为了使机动车、自行车和行人各行其道,马路边要建护栏,某路段的护栏是用角钢焊接成正方形的框架,并在框架里安上钢丝网(如下图).‎ 因为道路的长短各不相同,护栏的长短也各不一样,其中正方形方框的个数是不确定的,难以用一个固定的数来表示.‎ 焊接一个方框需要4根角钢,要焊接2个、3个、100个、200个、a个方框各需多少根角钢?‎ 对于焊接2个、3个方框所需的角钢根数,可以从下图中数出来,它们分别是7根和10根.‎ 但对于焊接100个、200个,a个方框所需的角钢根数,就无法从图中数出来,工程建设的备料必须做到心中有数,备料太多造成浪费,备料不足造成停工待料,延误工期,怎么办?‎ 凡生产实践中遇到的重大技术难题,一般都通过理念研究加以解决,这就是探索规律.‎ 二、探索规律 请同学们以火柴棒代替角钢进行探索,能找到规律者就是为生产建设做出了贡献,探索中要注意:特殊与一般、操作与思考、独立钻研与合作交流相结合.‎ 小陈:如下图,第一个正方形用4根.‎ 后面,每增加一个正方形,多用3根,a个正方形共用[4+3(a-1)]根.‎ 小本:如下图,先搭1根.‎ 后面,每增加一个正方形,多用3根a个正方形共用(1+‎3a根).‎ 小林:如下图,先搭3根.‎ 后面,每增加3根,就多一个正方形,最后再补上1根,成了a个正方形,a个正方形共用(‎3a+1)根.‎ 小经:如下图,上边a根,下边a根,中间(a+1)根,a个正方形共用[a+a+(a+1)]根.‎ K K K K 小青:如下图,每个正方形算4根,a个正方形共计‎4a根,其中要扣除重复计算的(a-1)根,实际需要[‎4a-(a-1)]根.‎ 小陈、小本、小林、小经、小青五个人所找的规律一样吗?请看下面的整合.‎ 三、五种表达式的整合 若用a,b,c分别表示三个数,则 ‎(1)加法交换律表示成a+b=b+a.‎ ‎(2)加法结合律表示成(a+b)+c=a+(b+c).‎ ‎(3)分配律表示成c(a+b)=ca+cb.‎ ‎4+3(a-1)=4+‎3a-3(分配律)‎ ‎ =1+‎3a(交换律和结合律)‎ 所以,小陈、小本、小林的结果相同.‎ a+a+(a+1)=a+a+a+1=‎3a+1(三个数的和等于这个数的3倍)‎ 所以,小林、小红的结果相同.‎ 因为a-1的相反数是1-a,且减去一个数等于加上这个数的相反数 所以‎4a-(a-1)=‎4a+(1-a)‎ ‎ =‎4a+1-a ‎ =‎4a-a+1‎ ‎ =‎3a+1‎ 所以,五个人的结果都相同.‎ 总之,焊接a个正方形的方框,需要(‎3a+1)根角钢.‎ 四、运用规律 理论形成的成果回过头来指导生产实践,就是运用规律.‎ 当a=1时,‎3a+1=3×1+1=4;‎ 当a=2时,‎3a+1=3×2+1=7;‎ 当a=3时,‎3a+1=3×3+1=10;(以上结果与第一个图相同)‎ 当a=100时,‎3a+1=3×100+1=301;(焊100个方框,需301根角钢)‎ 当a=200时,‎3a+1=3×200+1=601;(焊200个方框,需601根角钢)‎ 当a=10 000时,‎3a+1=3×10 000+1=30 001;(焊10 000个方框,需30 001根角钢)‎ 数学使我们增长了才干,提高了解决实际问题的本领.‎ 字母可以表示任何数.‎ 练习、用字母表示长方形的周长和面积.‎ 当a、b分别表示长方形的长与宽时,长方形的周长为2(a+b),面积为ab.‎ 当a、b、c分别表示长方体的长、宽、高时,长方体的体积为abc.‎ 当r表示半圆半径时,圆的周长为2πr,圆的面积为πr2.‎ 五、小结与作业 ‎1.(1)探索规律并用字母表示数字规律;‎ ‎(2)用字母表示相关运算律、法则和公式.‎ ‎2.作业:习题3.1.‎ 板书设计

资料: 7.8万

进入主页

人气:

10000+的老师在这里下载备课资料