七上数学005班级:姓名:学号:1.2.4(1)绝对值教案一、教学目标1.初步理解绝对值的概念.2.给出一个数,能求它的绝对值.3.通过解释绝对值的几何意义,渗透数形结合和转化的数学思想.4.通过数形结合理解绝对值的意义和相反数与绝对值的联系,使学生进一步领略数学的和谐美.二、学法引导采用学案导学,辅之以讲授,学生讨论,力求体现“教为主导,学为主体”的教学要求,注意创设问题情境,使学生自得知识,自觅规律.三、重点、难点1.重点:给出一个数会求出它的绝对值.2.难点:绝对值的几何意义,代数定义的导出.四、教学过程 (一)创设情境,复习导入 师:以上我们学习了数轴、相反数.在练习本上画一个数轴,并标出表示-10,+10,0及它们的相反数的点.学生活动:一个学生板演,其他学生在练习本上画.【设计说明】绝对值的学习是以相反数为基础的,在学生动手画数轴的同时,把相反数的知识进行复习,同时也为绝对值概念的引入奠定了基础,这里老师不包办代替,让学生自己练习.(二)探索新知,导入 新课生:自学课本第11页第一节师:同学们做得非常好!-10与+10是相反数,它们只有符号不同,它们什么相同呢?学生活动:思考讨论,很难得出答案.6
七上数学005班级:姓名:学号:师:在数轴上标出到原点距离是10个单位长度的点.学生活动:一个学生板演,其他学生在练习本上做.师:显然A点(表示10的点)到原点的距离是10,B点(表示-10的点)到原点距离是10个单位长吗?学生活动:产生疑问,讨论.师:+10与-10虽然符号不同,但表示这两个数的点到原点的距离都是10,是相同的.我们把这个距离叫+10与-10的绝对值.[板书]1.2.4绝对值(1)【设计说明】针对“互为相反数的两数只有符号不同”提出问题:“它们什么相同呢?”在学生头脑中产生疑问,激发了学生探索知识的欲望,但这时学生很难回答出此问题,这时教师注意引导再提出要求:“找到原点距离是10个单位长度的点”这时学生就有了一个攀登的台阶,自然而然地想到表示+10,-10的点到原点的距离相同,从而引出了绝对值的概念,这样一环紧扣一环,时而紧张时而轻松,不知不觉学生已获得了知识.师:-10的绝对值是表示-10的点到原点的距离,-10的绝对值是10; 10的绝对值是表示10的点到原点的距离,10的绝对值是10.提出问题:(1)-3的绝对值表示什么? (2)3的绝对值呢? (3)a的绝对值呢?学生活动:(1)(2)题根据教师的引导学生口答,(3)题讨论后口答.[板书]数轴上表示数a的点与原点的距离叫做一个数a的绝对值.数a的绝对值记作|a|【设计说明】由-10,10,-3,3这些特殊的数的绝对值引出数的绝对值,逐层铺垫,由学生得出绝对值的几何意义,既理解了一个数的绝对值的含义也训练了学生口头表达能力,突破了难点.(三)尝试反馈,巩固练习师:数a可以表示任意数,若把a换成6,9,0,-1,-0.4观察数轴,它们的绝对值各是多少?6
七上数学005班级:姓名:学号:学生活动:口答:6的绝对值是6,9的绝对值是9,0的绝对值是0,-1的绝对值是1,-0.4的绝对值是0.4师:你在自己画的数轴上标出五个数,让同桌指出它们的绝对值.学生活动:按教师要求自己又当“小老师”又当“学生”.教师找一组学生回答,并及时纠正出现的错误.(电脑显示幻灯片1)例题:求8,-8,,-的绝对值.师:观察数轴做出此题.学生活动:口答8的绝对值是8,-8的绝对值是8,的绝对值是,-的绝对值是.师:由此题目你能想到什么规律?学生活动:讨论得出—互为相反数的两数绝对值相同.【设计说明】这一环节是对绝对值的几何定义的巩固.这里对于绝对值定义的理解不能空谈“5的绝对值、-7的绝对值是多少”?而是与数轴相结合,始终利用表示这数的点到原点的距离是这个数的绝对值这一概念.教师先阐明这个字母可表示任意数,再把a换成一组数,学生自己又把a换成了一些数,指出它们的绝对值,这样既理解了数所表示的广泛含义,又巩固了绝对值的定义.然后,通过例题总结出了互为相反数的两数的绝对值相等这一规律,既呼应了前面内容,又升华了绝对值的概念.师:观察数轴,在原点右边的点表示的数(正数)的绝对值有什么特点?在原点左边的点表示的数(负数)的绝对值呢?生:思考,不能轻易回答出来.师:再看前面我们所求的“6的绝对值是6,9的绝对值是9,0的绝对值是0,-1的绝对值是1,-0.4的绝对值是0.4”你能得出什么规律吗?学生活动:思考后一学生口答.教师纠正并板书:6
七上数学005班级:姓名:学号:[板书]正数的绝对值是它本身.负数的绝对值是它的相反数. 0的绝对值是0.师:字母a可表示任意的数,可以表示正数,也可以表示负数,也可以表示0.教师引导学生用数学式子表示正数、负数、0,并再提问:这时a的绝对值分别是多少?学生活动:分组讨论,教师加入讨论,学生互相补充回答.教师板书:[板书](1)当a是正数时,则=a;(2)当a是负数时,则=-a;(3)当a是0时,则=0.师强调:这种表示方法就相当于前面三句话,比较起来后者更通俗易懂.【设计说明】用字母表示规律是难点.这时教师放手,让学生有目的地考虑、分析,共同得出结论.巩固练习:(出示投影2)1.写出下列各数的绝对值:6,-8,-3.9,,-,100,0.2.判断下列说法是否正确:⑴符号相反的数互为相反数;⑵符号相反且绝对值相等的数互为相反数;⑶一个数的绝对值越大,表示它的点在数轴上越靠右;6
七上数学005班级:姓名:学号:⑷一个数的绝对值越大,表示它的点在数轴上离原点越远。3.计算:⑴=⑵=⑶=(4)=学生活动:1、2题口答,3题自己演算,三个学生板演.【设计说明】1题的前四个旨在直接运用绝对值的性质,后两个略有加深,需要讨论后回答;2题(3)小题让学生区别绝对值符号和括号的不同含义.(四)归纳小结师:这节课我们学习了绝对值的概念和求法,请同学们做一下自我小结,看看有哪些收获.生:(1)一个数的绝对值是在数轴上表示这个数的点到原点的距离;(2)求一个数的绝对值必须先判断是正数还是负数.(五)反馈练习:(电脑出示幻灯片3)1.-3的绝对值是在_____________上表示-3的点到__________的距离,-3的绝对值是____________.2.绝对值是3的数有____________个,各是___________; 绝对值是2.7的数有___________个,各是___________; 绝对值是0的数有____________个,是____________. 绝对值是-2的数有没有?3.(1)当a是正数时,则=___________;(2)当a是负数时,则=___________;(3)当a是0时,则=___________.6
七上数学005班级:姓名:学号:【设计说明】在总结完本节课的知识要点后,再回头对本节重点内容进行反馈练习,并且注意把知识进行升华.(六)达标测试1.判断题(1)数a的绝对值就是数轴上表示数的点与原a点的距离( )(2)负数没有绝对值( )(3)绝对值最小的数是0( )(4)如果甲数的绝对值比乙数的绝对值大,那么甲数一定比乙数大( )(5)如果数a的绝对值等于a,那么a一定是正数()2.填空(1)12的绝对值是;(2)-24的绝对值是;(3)的绝对值是;(4)的绝对值是;(5)当a是时,则=a;(2)当a是时,则=-a.(七)、布置作业 (八)教学反思6