人教版八年级数学上册课件:平方差公式
加入VIP免费下载

人教版八年级数学上册课件:平方差公式

ID:701790

大小:112.11 KB

页数:21页

时间:2021-05-29

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
PPT模板:www.1ppt.com/moban/ PPT素材:www.1ppt.com/sucai/ PPT背景:www.1ppt.com/beijing/ PPT图表:www.1ppt.com/tubiao/ PPT下载:www.1ppt.com/xiazai/ PPT教程: www.1ppt.com/powerpoint/ 资料下载:www.1ppt.com/ziliao/ 个人简历:www.1ppt.com/jianli/ 试卷下载:www.1ppt.com/shiti/ 教案下载:www.1ppt.com/jiaoan/ 手抄报:www.1ppt.com/shouchaobao/ PPT课件:www.1ppt.com/kejian/ 语文课件:www.1ppt.com/kejian/yuwen/ 数学课件:www.1ppt.com/kejian/shuxue/ 英语课件:www.1ppt.com/kejian/yingyu/ 美术课件:www.1ppt.com/kejian/meishu/ 科学课件:www.1ppt.com/kejian/kexue/ 物理课件:www.1ppt.com/kejian/wuli/ 化学课件:www.1ppt.com/kejian/huaxue/ 生物课件:www.1ppt.com/kejian/shengwu/ 地理课件:www.1ppt.com/kejian/dili/ 历史课件:www.1ppt.com/kejian/lishi/ 平方差公式 第十四章 整式的乘法与因式分解 多项式与多项式是如何相乘的? (x + 3)( x+5) =x2+5x +3x +15 =x2 +8x +15. (a+b)(m+n) =am +an +bm +bn PPT模板:www.1ppt.com/moban/ PPT素材:www.1ppt.com/sucai/ PPT背景:www.1ppt.com/beijing/ PPT图表:www.1ppt.com/tubiao/ PPT下载:www.1ppt.com/xiazai/ PPT教程: www.1ppt.com/powerpoint/ 资料下载:www.1ppt.com/ziliao/ 个人简历:www.1ppt.com/jianli/ 试卷下载:www.1ppt.com/shiti/ 教案下载:www.1ppt.com/jiaoan/ 手抄报:www.1ppt.com/shouchaobao/ PPT课件:www.1ppt.com/kejian/ 语文课件:www.1ppt.com/kejian/yuwen/ 数学课件:www.1ppt.com/kejian/shuxue/ 英语课件:www.1ppt.com/kejian/yingyu/ 美术课件:www.1ppt.com/kejian/meishu/ 科学课件:www.1ppt.com/kejian/kexue/ 物理课件:www.1ppt.com/kejian/wuli/ 化学课件:www.1ppt.com/kejian/huaxue/ 生物课件:www.1ppt.com/kejian/shengwu/ 地理课件:www.1ppt.com/kejian/dili/ 历史课件:www.1ppt.com/kejian/lishi/ 面积变了吗? a米 5米 5米a米 (a-5)米 平方差公式 PPT模板:www.1ppt.com/moban/ PPT素材:www.1ppt.com/sucai/ PPT背景:www.1ppt.com/beijing/ PPT图表:www.1ppt.com/tubiao/ PPT下载:www.1ppt.com/xiazai/ PPT教程: www.1ppt.com/powerpoint/ 资料下载:www.1ppt.com/ziliao/ 个人简历:www.1ppt.com/jianli/ 试卷下载:www.1ppt.com/shiti/ 教案下载:www.1ppt.com/jiaoan/ 手抄报:www.1ppt.com/shouchaobao/ PPT课件:www.1ppt.com/kejian/ 语文课件:www.1ppt.com/kejian/yuwen/ 数学课件:www.1ppt.com/kejian/shuxue/ 英语课件:www.1ppt.com/kejian/yingyu/ 美术课件:www.1ppt.com/kejian/meishu/ 科学课件:www.1ppt.com/kejian/kexue/ 物理课件:www.1ppt.com/kejian/wuli/ 化学课件:www.1ppt.com/kejian/huaxue/ 生物课件:www.1ppt.com/kejian/shengwu/ 地理课件:www.1ppt.com/kejian/dili/ 历史课件:www.1ppt.com/kejian/lishi/ (1)(x + 1)( x-1); (2)(m + 2)( m-2); (3)(2m+ 1)(2m-1); (4)(5y + z)(5y-z). 计算下列多项式的积,你能发现什么规律? 算一算:看谁算得又快又准. x2 - 12 m2-22 (2m)2 - 12 (5y)2 - z2 想一想:这些计算结果有什么特点? PPT模板:www.1ppt.com/moban/ PPT素材:www.1ppt.com/sucai/ PPT背景:www.1ppt.com/beijing/ PPT图表:www.1ppt.com/tubiao/ PPT下载:www.1ppt.com/xiazai/ PPT教程: www.1ppt.com/powerpoint/ 资料下载:www.1ppt.com/ziliao/ 个人简历:www.1ppt.com/jianli/ 试卷下载:www.1ppt.com/shiti/ 教案下载:www.1ppt.com/jiaoan/ 手抄报:www.1ppt.com/shouchaobao/ PPT课件:www.1ppt.com/kejian/ 语文课件:www.1ppt.com/kejian/yuwen/ 数学课件:www.1ppt.com/kejian/shuxue/ 英语课件:www.1ppt.com/kejian/yingyu/ 美术课件:www.1ppt.com/kejian/meishu/ 科学课件:www.1ppt.com/kejian/kexue/ 物理课件:www.1ppt.com/kejian/wuli/ 化学课件:www.1ppt.com/kejian/huaxue/ 生物课件:www.1ppt.com/kejian/shengwu/ 地理课件:www.1ppt.com/kejian/dili/ 历史课件:www.1ppt.com/kejian/lishi/ (a+b)(a−b)= a2−b2 也就是说,两个数的和与这两个数的差的 积,等于这两数的平方差.这个公式叫做(乘法 的)平方差公式. 1.(a – b ) ( a + b) = a2 - b2 2.(b + a )( -b + a ) = a2 - b2 PPT模板:www.1ppt.com/moban/ PPT素材:www.1ppt.com/sucai/ PPT背景:www.1ppt.com/beijing/ PPT图表:www.1ppt.com/tubiao/ PPT下载:www.1ppt.com/xiazai/ PPT教程: www.1ppt.com/powerpoint/ 资料下载:www.1ppt.com/ziliao/ 个人简历:www.1ppt.com/jianli/ 试卷下载:www.1ppt.com/shiti/ 教案下载:www.1ppt.com/jiaoan/ 手抄报:www.1ppt.com/shouchaobao/ PPT课件:www.1ppt.com/kejian/ 语文课件:www.1ppt.com/kejian/yuwen/ 数学课件:www.1ppt.com/kejian/shuxue/ 英语课件:www.1ppt.com/kejian/yingyu/ 美术课件:www.1ppt.com/kejian/meishu/ 科学课件:www.1ppt.com/kejian/kexue/ 物理课件:www.1ppt.com/kejian/wuli/ 化学课件:www.1ppt.com/kejian/huaxue/ 生物课件:www.1ppt.com/kejian/shengwu/ 地理课件:www.1ppt.com/kejian/dili/ 历史课件:www.1ppt.com/kejian/lishi/ (a+b)(a-b)=(a)2-(b)2 相同为a 相反为b,-b 适当交换 合理加括号 平方差公式是 多项式乘法 (a+b)(p+q) 中,p=a,q=-b 的特殊形式. a2-b2 a2-b2 b2-a2 b2-a2 计算: (1) (3x+2 )( 3x-2 ) ; (2)(-x+2y)(-x-2y). (2) 原式= (-x)2 - (2y)2 =x2 - 4y2. 解:(1)原式=(3x)2-22 =9x2-4. 应用平方差公式计算时,应注意以下几点:(1)左边是两个二 项式相乘,并且这两个二项式中一项完全相同,另一项互为相反数;(2) 右边是相同项的平方减去相反项的平方;(3)公式中的a和b可以是具体的 数,也可以是单项式或多项式. 例1 【练习】利用平方差公式计算: (1)(3x-5)(3x+5); (2)(-2a-b)(b-2a); (3)(-7m+8n)(-8n-7m). 解:(1)原式=(3x)2-52=9x2-25. (2)原式=(-2a)2-b2=4a2-b2. (3)原式=(-7m)2-(8n)2=49m2-64n2. 计算: (1) (y+2) (y-2) – (y-1) (y+5); (2) 102×98 .解: (1) (y+2)(y-2)- (y-1)(y+5) (2)102×98 =y2-4-y2-4y+5 =- 4y + 1. =y2-22-(y2+4y-5) =9996. = (100+2)(100-2) = 1002-22 = 10 000 – 4 通过合理变形, 利用平方差公式, 可以简化运算. 不符合平方差公 式运算条件的 乘法,按乘法 法则进行运算. 例2 【练习】计算: (1) 51×49; (2)(3x+4)(3x-4)-(2x+3)(3x-2) . 解: (1) 原式=(50+1)(50-1) = 502-12 =2500 – 1 =2499. (2) 原式=(3x)2-42-(6x2+5x-6) = 9x2-16-6x2-5x+6 = 3x2-5x-10. 先化简,再求值:(2x-y)(y+2x)-(2y+x)(2y- x),其中x=1,y=2. 原式=5×12-5×22=-15. 解:原式=4x2-y2-(4y2-x2) =4x2-y2-4y2+x2 =5x2-5y2. 当x=1,y=2时, 例3 对于任意的正整数n,整式(3n+1)(3n-1)- (3-n)(3+n)的值一定是10的整数倍吗? 即(3n+1)(3n-1)-(3-n)(3+n)的值一定是10的 整数倍. 解:原式=9n2-1-(9-n2) =10n2-10. ∵(10n2-10)÷10=n2-1,n为正整数,∴n2-1为整数. 在探究整除性或倍数问题时,一般先将代数式化为最简, 然后根据结果的特征,判断其是否具有整除性或倍数关系. 例4 1.下列运算中,可用平方差公式计算的是(  ) A.(x+y)(x+y) B.(-x+y)(x-y) C.(-x-y)(y-x) D.(x+y)(-x-y) C 2.计算(2x+1)(2x-1)等于(  ) A.4x2-1 B.2x2-1 C.4x-1 D.4x2+1 A 3.两个正方形的边长之和为5,边长之差为2,那 么用较大的正方形的面积减去较小的正方形的 面积,差是________. 10 (1)(a+3b)(a- 3b); =4a2-9. =4x4-y2. 解:原式=(2a+3)(2a-3) =a2-9b2 . =(2a)2-32 解:原式=(-2x2 )2-y2 解:原式=a2-(3b)2 (2)(3+2a)(-3+2a); (3)(-2x2-y)(-2x2+y). 4.利用平方差公式计算: 5.计算: 20172 - 2016×2018. 解: 20172 - 2016×2018 = 20172 - (2017-1)×(2017+1) = 20172- (20172-12 ) = 20172 - 20172+12 =1. 6.利用平方差公式计算: (1)(a-2)(a+2)(a2 + 4) ; 解:原式=(a2-4)(a2+4) =a4-16. (2) (x-y)(x+y)(x2+y2)(x4+y4). 解:原式=(x2-y2)(x2+y2)(x4+y4) =(x4-y4)(x4+y4) =x8-y8. 7.先化简,再求值:(x+1)(x-1)+x2(1-x)+x3, 其中x=2. 解:原式=x2-1+x2-x3+x3 =2x2-1. 将x=2代入上式, 得原式=2×22-1=7. 8.已知x≠1,计算:(1+x)(1-x)=1-x2,(1-x)(1+ x+x2)=1-x3,(1-x)(1+x+x2+x3)=1-x4. (1)观察以上各式并猜想:(1-x)(1+x+x2+…+xn)= ________;(n为正整数)(2)根据你的猜想计算: ①(1-2)(1+2+22+23+24+25)=________; ②2+22+23+…+2n=________(n为正整数); ③(x-1)(x99+x98+x97+…+x2+x+1)=________; 1-xn+1 -63 2n+1-2  x100-1  (3)通过以上规律请你进行下面的探索: ①(a-b)(a+b)=________; ②(a-b)(a2+ab+b2)=________; ③(a-b)(a3+a2b+ab2+b3)=________. a2-b2  a3-b3  a4-b4  平方差 公 式 内 容 注 意 两个数的和与这两个数的差的积, 等于这两个数的平方差. 字母表示:(a+b)(a-b)=a2-b2 应用时,紧紧抓住 “一同一反”这一特征 ,只有两个二项式的积才有可能应用平方 差公式;对于不能直接应用公式的,可能 要经过变形才可以应用

资料: 3.2万

进入主页

人气:

10000+的老师在这里下载备课资料