2.1.2椭圆的简单几何性质第1课时 椭圆的简单几何性质数学PPT课件之高中数学(人教版)高中数学选修1-1课件:第2章圆锥曲线与方程2.1.2.1
自主学习新知突破
1.通过对椭圆标准方程的研究,掌握椭圆的简单几何性质.2.了解椭圆的离心率对椭圆扁平程度的影响.
中国第一颗探月卫星——“嫦娥一号”发射后,首先被送入一个椭圆形地球同步轨迹,在第16小时时它的轨迹是:近地点200km,远地点5100km,地球半径约为6371km.
[问题1]此时长轴长是多少?[问题2]此时椭圆的离心率为多少?
标准方程_____________________________________图形范围___________________________________________顶点_________________________________________椭圆的简单几何性质-a≤x≤a,-b≤y≤b-b≤x≤b,-a≤y≤a(±a,0),(0,±b)(0,±a),(±b,0)
轴长短轴长=_____,长轴长=_____焦点________________焦距|F1F2|=________对称性对称轴:________,对称中心:__________离心率e=______∈_______2b2a(±c,0)(0,±c)坐标轴坐标原点(0,1)
1.下列各点是椭圆x2+2y2=2的顶点的是()A.(2,0)B.(0,2)C.(1,0)D.(0,1)答案:D
答案:A
合作探究课堂互动
由方程确定椭圆的性质已知椭圆的方程为4x2+9y2=36.(1)求椭圆的顶点坐标、焦点坐标、长轴长、短轴长以及离心率;(2)结合椭圆的对称性,运用描点法画出这个椭圆.
(1)求椭圆的性质时,应把椭圆化为标准方程,注意分清楚焦点的位置,这样便于直观地写出a,b的数值,进而求出c,求出椭圆的长轴和短轴的长、离心率、焦点和顶点的坐标等几何性质.(2)本题在画图时,利用了椭圆的对称性,利用图形的几何性质,可以简化画图过程,保证图形的准确性.
由椭圆的简单几何性质求方程
求椭圆的离心率
3.(1)若一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是________.(2)已知椭圆的两个焦点为F1,F2,A为椭圆上一点,且AF1⊥AF2,∠AF2F1=60°,求该椭圆的离心率.
(2)不妨设椭圆的焦点在x轴上,画出草图如图所示.由AF1⊥AF2知,△AF1F2为直角三角形,且∠AF2F1=60°.
【错因】仅根据椭圆的离心率不能确定焦点的位置,而上述解法默认为焦点在x轴上,而没有对焦点的位置进行讨论.
高效测评知能提升
谢谢观看!