知识讲解 气体热现象的微观意义
加入VIP免费下载

知识讲解 气体热现象的微观意义

ID:104901

大小:304 KB

页数:12页

时间:2020-06-17

温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
1 气体热现象的微观意义 【学习目标】 1.知道气体分子的运动特点,知道气体分子的运动遵循统计规律. 2.知道气体压强的微观意义. 3.知道三个气体实验定律的微观解释. 4.了解气体压强公式和推导过程. 【要点梳理】 要点一、统计规律 1.统计规律 由于物体是由数量极多的分子组成的,这些分子并没有统一的运动步调,单独看来,各个分子的 运动都是不规则的,带有偶然性,但从总体来看,大量分子的运动却有一定的规律,这种规律叫做统 计规律. 2.分子的分布密度 分子的个数与它们所占空间的体积之比叫做分子的分布密度,通常用 表示. 3.气体分子运动的特点 (1)气体分子之间的距离很大,失约是分子直径的 倍.因此除了相互碰撞或者跟器壁碰撞外, 气体分子不受力的作用,在空间自由移动. (2)分子的运动杂乱无章,在某一时刻,向着任何一个方向运动的分子都有,而且向各个方向运 动的气体分子数目都相等. (3)每个气体分子都在做永不停息的运动,常温下大多数气体分子的速率都达到数百米每秒,在 数量级上相当于子弹的速率. (4)气体分子的热运动与温度的关系 ○1 温度越高,分子的热运动越激烈. ○2 理想气体的热力学温度 与分子的平均动能 成正比,即: (式中 是比例常数), 因此可以说,温度是分子平均动能的标志. 要点诠释:理想气体没有分子势能,所以其内能仅由温度决定,温度越高,内能越大,温度越低, 内能越小. 要点二、对气体的微观解释 1.气体压强的微观意义 (1)气体压强的大小等于气体作用在器壁单位面积上的压力. (2)产生原因:大量气体分子无规则运动碰撞器壁,形成对器壁各处均匀的持续的压力而产 生. (3)决定因素:一定气体的压强大小,微观上决定于分子的平均动能和单位体积内的分子数;宏 观上决定于气体的温度 和体积 2.对气体实验定律的微观解释 (1)一定质量的气体,分子的总数是一定的,在温度保持不变时,分子的平均动能保持不变,气 体的体积减小到原来的几分之一,气体的密度就增大到几倍,因此压强就增大到几倍,反之亦然,所 以气体压强与体积成反比,这就是玻意耳定律. (2)一定质量的气体,体积保持不变而温度升高时,分子的平均动能增大,因而气体压强增大, 温度降低时,情况相反,这就是查理定律所表达的内容. (3)一定质量的气体,温度升高时要保持压强不变,只有增大气体体积,减小分子的分布密度才 行,这就是盖一吕萨克定律所表达的内容. n 10 T kE kT aE= a T V2 要点三、分子的平均动能 1.分子的平均动能 物体分子动能的平均值叫分子平均动能. 温度是分子平均动能的标志,温度越高,分子平均动能越大. 物体内部各个分子的运动速率是不相同的,所以分子的动能也不相等.在研究热现象时,有意义 的不是一个分子的动能,而是物体内所有分子动能的平均值——分子平均动能. 物体的温度是大量分子热运动剧烈程度的特征,分子热运动越剧烈,物体的温度越高,分子平均 动能就越大,所以说温度是分子平均动能的标志这是对温度这一概念从物体的冷热程度的简单认识, 进一步深化到它的微观含义、本质的含义. 2.判断气体分子平均动能变化的方法 (1)判断气体的平均动能的变化,关键是判断气体温度的变化,因为温度是气体分子平均动能的 标志. (2)理解气体实验定律的微观解释关键在于理解压强的微观意义. 要点四、宏观、微观的区别与联系 1.宏观、微观的区别与联系 从宏观上看,一定质量的气体仅温度升高或仅体积减小都会使压强增大,从微观上看,这两种情 况有没有什么区别? 分析:因为一定质量的气体的压强是由单位体积内的分子数和气体的温度决定的.气体温度升高, 即气体分子运动加剧,分子的平均速率增大,分子撞击器壁的作用力增大,故压强增大.气体体积减 小时,虽然分子的平均速率不变,分子对容器的撞击力不变,但单位体积内的分子数增多,单位时间 内撞击器壁的分子数增多,故压强增大,所以这两种情况下在微观上是有区别的. 2.气体压强的公式 现在从分子动理论的观点推导气体压强的公式. 设想有一个向右运动的分子与器壁发生碰撞(图 8-5-1),碰撞前的速率为 ,碰撞前的动量为 ,碰撞后向左运动。速率为 ,碰撞后的动量为 .碰撞前后的动量变化为 .设 分子与器壁的碰撞没有能量损失,分子碰撞前后的速率相等,即 ,因而碰撞前后的动量变化量 为 . 这个动量变化量 等于器壁对分子的冲量,从牛顿第三定律知道,分子对器壁也有一个大小 相等方向相反的冲量.可见,气体分子每碰撞一次器壁,就给器壁 的冲量. 单位时间内大量分子对器壁的总冲量等于器壁所受的平均压力,对单位面积器壁的总冲量就等于 气体的压强.怎样算出这个总冲量呢?单靠力学知识不行,需要用到统计方法. 大量气体分子做无规则的热运动,它们沿各个方向运动的机会是均等的,从统计的观点来看,可 以认为各有 的分子向着上、下、前、后、左、右这六个方向运动,气体分子的速率是按照一定的 v mv 'v 'mv- 'mv mv- - 'v v= 2mv- 2mv- 2mv 1/63 统计规律分布的,可以认为所有分子都以平均速率 v 向着各个方向运动.计算出大量气体分子碰撞器 壁的总冲量,就可以进一步求出器壁所受的压力,进而求出气体的压强来. 如图所示,在气体内部设想一个柱体,底面积为单位面积,高度为分子平均速率 v 的数值,设气 体单位体积中的分子数为 ,则在这个柱体中有 个向右运动的分子.因此,在单位时间内,这 个分子会与器壁发生碰撞.分子每碰撞一次器壁,给器壁的冲量为 . 因此,单位时间内分子给单位面积器壁的总冲量等于 . 单位时间内气体对器壁的总冲量等于器壁所受的平均压力,单位器壁所受的平均压力就等于气体 的压强 (如图).于是我们得到气体的压强公式: . 气体分子的平均动能 , 上式化为 . 从这个公式可以知道,单位体积内的分子数越多,气体分子的平均动能越大,气体的压强就越 大. 要点四、知识归纳与提升 0n 0 1 6 n v 0 1 6 n v 2mv 2 0 0 1 126 3n v mv n mv⋅ = p 2 0 1 3p n mv= 21 2E mv= 0 2 3p n E=4 1.知识梳理 (1)气体分子沿各个方向运动的机会均等,分子速率按一定的“中间多,两头少”的统计规律分 布. (2)影响气体压强的两个因素是:分子的平均动能和单位体积内的分子数,而且气体的压强正比 于二者的乘积. 2.规律方法总结 (1)判断气体的平均动能的变化,关键是判断气体温度的变化,因为温度是气体分子平均动能的 标志. (2)理解气体实验定律的微观解释关键在于理解压强的微观意义. 【典型例题】 类型一、微观解释 例 1.(2016 聊城模拟)对于一定质量的理想气体,下列论述中正确的是(  ) A.若单位体积内分子个数不变,当分子热运动加剧时,压强一定变大 B.若单位体积内分子个数不变,当分子热运动加剧时,压强可能不变 C.若气体的压强不变而温度降低时,则单位体积内分子个数一定增加 D.若气体的压强不变而温度降低时,则单位体积内分子个数可能不变 E.气体的压强由温度和单位体积内的分子个数共同决定 【答案】ACE 【解析】单位体积内分子个数不变,当分子热运动加剧时,单位面积上的碰撞次数和碰撞的平均 力都增大,因此这时气体压强一定增大,故 A 正确,B 错误;若气体的压强不变而温度降低时,气体 分子热运动的平均动能减小,则单位体积内分子个数一定增加,故 C 正确,D 错误;气体的压强与气 体的温度和单位体积内的分子个数共同决定,E 正确。 举一反三: 【变式 1】容积不变的容器内封闭着一定质量的理想气体,当温度升高时( ). A.每个气体分子的速率都增大 B.单位时间内气体分子撞击单位面积器壁的次数增多 C.气体分子对器壁的撞击在单位面积上每秒钟内的个数增多 D.气体分子在单位时间内,作用于单位面积器壁的总冲量增大 【答案】B、C、D 【解析】气体温度增加时,从平均效果来说,物体内部分子的热运动加剧,是大量分子热运动的 集体表现.而对单个的分子而言,说它的温度与动能之间有联系是没有意义的,故选项 A 不正确. 理想气体的温度升高,分子的无规则热运动加剧,使分子每秒钟与单位面积器壁的碰撞次数增多, 因分子平均动能增大,分子每次碰撞而施于器壁的冲量也增大,因而气体分子在单位时间内,作用于 单位面积器壁的总冲量也增大,故选项 B、C、D 正确. 举一反三: 【变式 2】对于一定量的稀 薄气体,下列说法正确的是( )5 A.压强变大时,分子热运动必然变得剧烈 B.保持压强不变时,分子热运动可能变得剧烈 C.压强变大时,分子间的平均距离必然变小 D.压强变小时,分子间的平均距离可能变小 【答案】BD 【解析】一定质量的稀薄气体可以看做理想气体,分子运动的剧烈程度与温度有关,温度越高, 分子运动的越剧烈;压强变大可能是的原因是体积变小或温度升高,所以压强变大,分子热运动不一 定剧烈,AC 项错误,B 项正确;压强变小时,也可能体积不变,可能变大,也可能变小;温度可能降 低,可能不变,可能升高,所以分子间距离不能确定,D 项正确。 例 2.一定质量的某种理想气体,当它的热力学温度升高为原来的 1.5 倍、体积增大为原来的 3 倍 时,压强将变为原来的多少?请你从压强和温度的微观意义来说明. 【思路点拨】气体的压强在微观意义上正比于单位体积内气体分子个数和气体分子平均动能的乘 积. 【答案】见解析 【解析】在微观意义上,气体的压强等于单位面积上气体碰撞器壁的作用力,找出单位时间内碰 撞器壁作用力的决定因素,即可求解. 若单位体积内的分子数为 n0 个,则单位面积上单位时间内能碰撞器壁的分子所占的体积 , 所以碰撞器壁的分子个数 n∝n0V,即 .每个气体分子以平均速率 碰撞器壁时的速率变化量 为 ,则由牛顿第二定律得 .气体的压强等于在单位面积上的器壁受的碰撞力,则有 , 即 . ① 由于热力学温度升高为原来的 1.5 倍,由 得 . ② 体积增大为原来的 3 倍,则气体单位体积内的分子个数减为原来的 ,即 , ③ 由①②③式得 ,即气体的压强变为原来的 倍. 【总结升华】气体的压强在微观意义上正比于单位体积内气体分子个数和气体分子平均动能的乘 积. 举一反三: 【变式】对于一定质量的理想气体,下列论述中正确的是( ). A.当分子热运动变得剧烈时,压强必变大 B.当分子热运动变得剧烈时,压强可以不变 C.当分子间的平均距离变大时,压强必变小 D.当分子间的平均距离变大时,压强必变大 【答案】B 【解析】解此题应把握以下两个方面:①分子热运动的剧烈程度由温度高低决定;②对一定质量 V v= 0n n v∝ v 2v F ma mv= ∝ 2 0p nF n mv= ∝ 0 kp n E∝ kE aT= ' 1.5k kE E= 1 3 0 0 1' 3n n= 1' 2p p= 1 26 的理想气体, 恒量. 选项 A、B 中,“分子热运动变得剧烈”说明温度升高。但不知体积变化情况,所以压强变化情况 不确定,所以 A 错。B 对;选项 C、D 中,“分子间的平均距离变大”说明体积变大.但温度的变化情 况未知,故不能确定压强变化情况,所以 C、D 均不对,正确选项为 B. 类型二、平均动能 例 3.给一定质量、温度为 0℃的水加热,在水的温度由 0℃上升到 4℃的过程中,水的体积随着 温度升高反而减小,我们称之为“反常膨胀”。某研究小组通过查阅资料知道:水分子之间存在一种结 合力,这种结合力可以形成多分子结构,在这种结构中,水分了之间也存在相互作用的势能。在水反 常膨胀的过程中,体积减小是由于水分子之间的结构发生了变化,但所有水分子间的总势能是增大的。 关于这个问题的下列说法中正确的是( ) A.水分子的平均动能减小,吸收的热量一部分用于分子间的结合力做正功 B.水分子的平均动能减小,吸收的热量一部分用于克服分子间的结合力做功 C.水分子的平均动能增大,吸收的热量一部分用于分子间的结合力做正功 D.水分子的平均动能增大,吸收的热量一部分用于克服分子间的结合力做功 【答案】D 【解析】由于水的温度在升高,故水分子的平均动能增大,所以 A、B 错误;吸收热量的一部分 使水分子之间的结构发生了变化,而变化时是需要一定能量的,用来克服原来分子间原来的结合力而 做功,故 D 的说法是正确的。 举一反三: 【变式】有关气体压强,下列说法正确的是( ). A.气体分子的平均速率增大,则气体的压强一定增大 B.气体分子的密集程度增大,则气体的压强一定增大 C.气体分子的平均动能增大,则气体的压强一定增大 D.气体分子的平均动能增大,气体的压强有可能减小 【答案】D 【解析】气体的压强与两个因素有关,一是气体分子的平均动能,二是气体分子的密集程度,或 者说,一是温度,二是体积.平均动能或密集程度增大,都只强调问题的一方面,也就是说,平均动 能增大的同时,气体的体积也可能增大,使得分子密集程度减小,所以压强可能增大,也可能减小.同 理,当分子的密集程度增大时,分子平均动能也可能减小,压强的变化不能确定. 综上所述,正确答案为 D. 例 4.对一定质量的理想气体,下列说法正确的是( ). A.体积不变,压强增大时,气体分子的平均动能一定增大 B.温度不变,压强减小时,气体的密度一定减小 C.压强不变,温度降低时,气体的密度一定减小 D.温度升高,压强和体积都可能不变 【答案】A、B 【解析】根据气体压强、体积、温度的关系可知,体积不变,压强增大时,气体分子的平均动能 一定增大,选项 A 正确.温度不变,压强减小时,气体体积增大,气体的密度减小,选项 B 正确.压 强不变,温度降低时,体积减小,气体密度增大,选项 C 错误.温度升高,压强、体积中至少有一个 pV T =7 发生改变,选项 D 错误. 综上所述,正确答案为 A、B. 举一反三: 【变式】对一定质量的理想气体,下列说法正确的是( ). A.压强增大,体积增大,分子的平均动能一定增大 B.压强减小,体积减小,分子的平均动能一定 增大 C.压强减小,体积增大,分子的平均动能一定增大 D.压强增大,体积减小,分子的平均动能一定增大 【答案】A 8 【巩固练习】 一、选择题 1.(2016 吉林校级期末)关于密闭容器中气体的压强,下列说法正确的是( ). A.是由气体受到重力而产生的 B.是由大量气体分子频繁的撞击器壁产生的 C.压强的大小只取决于气体分子数量的多少 D.容器运动的速度越大,气体的压强也越大 2.(2015 肇庆三测)下列说法正确的是( ) A.理想气体温度升高时,分子的平均动能一定增大 B.一定质量的理想气体,体积减小时单位体积内的分子数增多,气体的压强一定增大 C.压缩处于绝热容器中的一定质量的理想气体,其内能一定增加 D.当分子力表现为引力时,分子力和分子势能都随分子间距离的增大而减小 3.密封在圆柱形容器内的气体上半部分密度为 ,压强为 p,则下半部分气体的压强和密度分别 为( ). A.p, B. , C.2p,2 D. , 4.一定质量的理想气体处于平衡状态Ⅰ,现设法使其温度降低而压强升高,达到平衡状态Ⅱ,则 ( ). A.状态Ⅰ时气体的密度比状态Ⅱ时的大 B.状态Ⅰ时分子的平均动能比状态Ⅱ时的大 C.状态Ⅰ时分子间的平均距离比状态Ⅱ时的大 D.状态Ⅰ时每个分子的动能都比状态Ⅱ时的分子平均动能大 5.一定质量的理想气体经历等温压缩过程时,气体压强增大,从分子运动理论观点来分析,这是 因为( ). A.气体分子的平均动能增大 B.单位时间内,器壁单位面积上分子碰撞的次数增多 C.气体分子数增加 D.气体分子的分布密度增大 6.如图所示为一定质量的某种气体的等压线,对于等压线上的 a、b 两个状态比较,下列说法正 确的是( ). A.在相同时间内撞在单位面积上的分子数 b 状态较多 ρ ρ 2 p 2 ρ ρ 2 p ρ9 B.在相同时间内撞在单位面积上的分子数 a 状态较多 c.在相同时间内撞在相同面积上的分子数两状态一样多 D.单位体积的分子数两状态一样多 7.x、y 两容器中装有相同质量的氦气,已知 x 容器中氦气的温度高于 y 容器中氦气的温度,但 压强却低于 y 中氦气的压强.由此可知( ). A.x 中氦气分子的平均动能一定大于 y 中氦气分子的平均动能 B.x 中每个氦气分子的动能一定都大于 y 中每个氦气分子的动能 C.x 中动能大的氦气分子数一定多于 y 中动能大的氦气分子数 D.x 中氦气分子的热运动一定比 y 中氦气分子的热运动剧烈 8.(2015 日照联合检测)某一密闭容器中密封着一定质量的某种实际气体,气体分子间的相互 作用力表现为引力。关于实际气体的下列说法中正确的是( ) A.在完仝失重的情况下,密封容器内的气体对器壁的顶部没有作用力 B.若气体膨胀对外界做功,则分子势能一定增大 C.若气体被压缩,外界对气体做功,则气体内能一定增加 D.若气体从外界吸收的热量等于膨胀对外界做的功,则气体分子的平均动能一定减小 二、填空题 9.容积为 20 升的圆筒内装有氧气,温度为 17℃,它的压强是 1.0×107 帕,在标准状态下,温度 为 2.5℃时这些氧气的体积为________升(取 1 标准大气压=1.0×105 帕). 10.如图所示,一端封闭,一端开口,截面积均匀的 U 形玻璃管 AB,管内装有水银,两水银面 高度相等,管 A 内封有一定质量的空气,今将管 B 的开口端接一抽气机,抽尽管曰内水银面上的空气, 结果两水银面产生 18 厘米的高度差,则 A 管内原来的气柱长度是________厘米(设外界气压为 72 厘 米汞柱). 11.密闭的体积为 1 升的氢气,压强为 2 个大气压,温度为 27℃.加热以后,压强、体积各增加 了原来的 l/10,则此时气体的温度为________℃. 12.一定质量的理想气体,在压强不变的情况下发生状态变化,如果气体增加的体积等于它在 0℃ 的体积,那么气体增加的温度为________。 三、解答题 13.(2016 贵州七校高三联考)如图所示,水平放置一个长方体的封闭气缸,用无摩擦活塞将内 部封闭气体分为完全相同的 A、B 两部分。初始时两部分气体压强均为 p、热力学温度均为 T。使 A 的10 温度升高 ΔT 而保持 B 部分气体温度不变。则 A 部分气体的压强增加量为多少? 14.(2015 上海金山期末)如图,上粗下细且上端开口的薄壁玻璃管内有一部分水银封住密闭 气体,横截面积分别为 S1=1cm2、S2=2cm2,细管内水银长度为 h1=4cm,封闭气体长度为 L=6cm。 大气压强为 p0=76cmHg,气体初始温度为 T1=280K,上管足够长。 (1)缓慢升高气体温度,求水银刚好全部进入粗管内时的温度 T2; (2)气体温度保持 T2 不变,为使封闭气体长度变为 8cm,需向开口端注入的水银柱的体积为多 少? 15.如图所示,一个密闭的汽缸,被活塞分成体积相等的左、右两室,汽缸壁与活塞是不导热的; 它们之间没有摩擦,两室中气体的温度相等.现利用右室中的电热丝对右室加热一段时间,达到平衡 后,左室的体积变为原来的 ,气体的温度 T1=300 K,求右室气体的温度. 【答案与解析】 一、选择题 1.【答案】B 【解析】气体的压强是由于大量做无规则热运动的分子对器壁频繁、持续地碰撞产生的,与气体 的重力无关,与容器的速度也无关,故 A、D 错误,B 正确;根据压强的微观意义可知,压强的大小 取决于气体分子的密度以及气体温度的高低,故 C 错误。故选 B。 2.【答案】A、C 【解析】理想气体温度升高时,分子的平均动能一定增大,选项 A 正确;对于一定质量的理想气 3 411 体,当体积减小时,单位体积的分子数增多,但是气体的压强不一定增大,还与分子的平均动能有 关.选项 B 错误;压缩处于绝热容器中的理想气体时,气体不会吸热及放热,则由热力学第一定律可 知内能一定增加;选项 C 正确;两分子之间的距离大于 r0,分子力表现为引力,分子力随着分子间距 的增大而减小,分子势能随着分子间距的增大而增大.选项 D 错误。 3.【答案】A 【提示】密封容器内气体各处的压强和密度均相同,其大小决定于气体的分子密度和温度。 4.【答案】B、C 【解析】题中从状态Ⅰ到状态Ⅱ,温度降低,分子的平均动能减小,B 项正确;由 ,得 从状态态Ⅰ到状态Ⅱ,T 减小而 p 增大,理想气体的体积 V 应当减小,故 C 项正确、A 项错误。 5.【答案】B、D 6.【答案】D 7.【答案】A、C、D 【解析】分子的平均动能取决于温度,温度越高,分子的平均动能越大,故 A 项正确;但对于任 一个氦气分子来说并不一定成立,故 B 项错;分子的动能也应遵从统计规律:即“中间多、两头少”, 温度较高时,动能大的分子数一定多于温度较低容器中动能大的分子数,C 项正确;温度越高,分子 的无规则热运动越剧烈,D 项正确。 8.【答案】BD 【解析】A、气体压强产生的原因是大量气体分子对容器壁的持续的、无规则撞击产生的.在完 全失重的情况下,密闭容器内的气体对器壁的顶部有作用力,故 A 错误; B、若气体膨胀对外界做功,分子之间的距离增大,需要克服气体分子之间的吸引力做功,则分子势 能一定增大,故 B 正确; C、若气体被压缩,外界对气体做功,若气体同时对外做功,则气体内能不一定增加,故 C 错误; D、若气体从外界吸收的热量等于膨胀对外界做的功,气体的内能不变,而分子势能一定增大,则气 体分子的平均动能一定减小,故 D 正确。 故选:BD 二、填空题 9.【答案】1.9×103 10.【答案】3 11.【答案】90 12.【答案】273℃ 三、解答题 13.【答案】 【解析】设温度升高后,AB 压强增加量都为 Δp, A 部分气体升高温度后体积为 VA, pV CT = 2 p T T ∆12 由理想气体状态方程得: 对 B 部分气体,升高温度后体积 VB,由玻意耳定律得:pV=(p+Δp)VB 两部分气体总体积不变:2V=VA+VB 解得: 14.【答案】(1)T2=455K;(2)37cm3 【解析】(1)S1h1=S2h2,h2=2cm 初状态:p1=p0+ph1=80cmHg,V1=LS1=6cm3,T1=280K 末状态:p2=p0+ph2=78cmHg,V2=(L+h1)S1=10cm3 根据 ,代入数据 得 T2=455K (2)等温变化,P2 V2=P3 V3 78×10=P3×8,得P3=97.5 cmHg 此时水银柱的液面高度差h3=97.5-76=21.5cm 注入的水银柱体积V注=(21.5-3)×2=37cm3 15.【答案】见解析 【解析】根据题意对汽缸中左、右两室中气体的状态进行分析: 左室的气体:加热前 p0、V0、T0,加热后 p1、 、T1; 右室的气体:加热前 p0、V0、T0,加热后 p1、 、T2。 根据理想气体状态方程: 恒量, 左室气体 ,右室气体 , 所以 ,所以 T2=500 K。 ( ) Ap p VpV T T T + ∆= + ∆ 2 p Tp T ∆∆ = 1 1 2 2 1 2 pV p V T T = 2 80 6 78 10=280 T × × 0 3 4V 0 5 4V pV T = 1 0 0 0 0 1 3 4p Vp V T T ⋅ = 1 0 0 0 0 2 5 4p Vp V T T ⋅ = 1 0 1 0 2 3 5 4 4 300K p V p V T ⋅ ⋅ =

资料: 584

进入主页

人气:

10000+的老师在这里下载备课资料