第二章 直线与平面的位置关系
§2.1.1 平面
一、教学目标:
1、知识与技能
(1)利用生活中的实物对平面进行描述;
(2)掌握平面的表示法及水平放置的直观图;
(3)掌握平面的基本性质及作用;
(4)培养学生的空间想象能力。
2、过程与方法
(1)通过师生的共同讨论,使学生对平面有了感性认识;
(2)让学生归纳整理本节所学知识。
3、情感与价值
使用学生认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣。
二、教学重点、难点
重点:1、平面的概念及表示;
2、平面的基本性质,注意他们的条件、结论、作用、图形语言及符号语言。
难点:平面基本性质的掌握与运用。
三、学法与教学用具
1、学法:学生通过阅读教材,联系身边的实物思考、交流,师生共同讨论等,从而较好地
完成本节课的教学目标。
2、教学用具:投影仪、投影片、正(长)方形模型、三角板
四、教学思想
(一)实物引入、揭示课题
师:生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象,
你们能举出更多例子吗?引导学生观察、思考、举例和互相交流。与此同时,教师对学生的
活动给予评价。
师:那么,平面的含义是什么呢?这就是我们这节课所要学习的内容。
(二)研探新知
1、平面含义
师:以上实物都给我们以平面的印象,几何里所说的平面,就是从这样的一些物体中抽象出
来的,但是,几何里的平面是无限延展的。
2、平面的画法及表示
师:在平面几何中,怎样画直线?(一学生上黑板画)
之后教师加以肯定,解说、类比,将知识迁移,得出平面的画法:水平放置的平面通常画成
一个平行四边形,锐角画成 450,且横边画成邻边的 2 倍长(如图)
平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四
边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面 AC、平面 ABCD 等。
如果几个平面画在一起,当一个平面的一部分被另一个平面遮住时,应画成虚线或不画(打
D C
BA
α
出投影片)
课本 P41 图 2.1-4 说明
平面内有无数个点,平面可以看成点的集合。
点 A 在平面α内,记作:A∈α
点 B 在平面α外,记作:B α
2.1-4
3、平面的基本性质
教师引导学生思考教材 P41 的思考题,让学生充分发表自己的见解。
师:把一把直尺边缘上的任意两点放在桌边,可以看到,直尺的整个边缘就落在了桌面上,
用事实引导学生归纳出以下公理
公理 1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内
(教师引导学生阅读教材 P42 前几行相关内容,并加以解析)
符号表示为
A∈L
B∈L => L α
A∈α
B∈α
公理 1 作用:判断直线是否在平面内
师:生活中,我们看到三脚架可以牢固地支撑照相机或测量用的平板仪等等……
引导学生归纳出公理 2
公理 2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A、B、C 三点不共线 => 有且只有一个平面α,
使 A∈α、B∈α、C∈α。
公理 2 作用:确定一个平面的依据。
教师用正(长)方形模型,让学生理解两个平面的交线的含义。
引导学生阅读 P42 的思考题,从而归纳出公理 3
公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:P∈α∩β =>α∩β=L,且 P∈L
公理 3 作用:判定两个平面是否相交的依据
4、教材 P43 例 1
通过例子,让学生掌握图形中点、线、面的位置关系及符号的正确使用。
5、课堂练习:课本 P44 练习 1、2、3、4
6、课时小结:(师生互动,共同归纳)
∉
α
β
α
β
·B
·Aα
L
A
·α
C
·
B
·
A
·α
P
·
α L
β
·B
(1)本节课我们学习了哪些知识内容?(2)三个公理的内容及作用是什么?
7、作业布置
(1)复习本节课内容;
(2)预习:同一平面内的两条直线有几种位置关系?
§2.1.2 空间中直线与直线之间的位置关系
一、教学目标:
1、知识与技能
(1)了解空间中两条直线的位置关系;
(2)理解异面直线的概念、画法,培养学生的空间想象能力;
(3)理解并掌握公理 4;
(4)理解并掌握等角定理;
(5)异面直线所成角的定义、范围及应用。
2、过程与方法
(1)师生的共同讨论与讲授法相结合;
(2)让学生在学习过程不断归纳整理所学知识。
3、情感与价值
让学生感受到掌握空间两直线关系的必要性,提高学生的学习兴趣。
二、教学重点、难点
重点:1、异面直线的概念;
2、公理 4 及等角定理。
难点:异面直线所成角的计算。
三、学法与教学用具
1、学法:学生通过阅读教材、思考与教师交流、概括,从而较好地完成本节课的教学目标。
2、教学用具:投影仪、投影片、长方体模型、三角板
四、教学思想
(一)创设情景、导入课题
1、通过身边诸多实物,引导学生思考、举例和相互交流得出异面直线的概念:不同在任何
一个平面内的两条直线叫做异面直线。
2、师:那么,空间两条直线有多少种位置关系?(板书课题)
(二)讲授新课
1、教师给出长方体模型,引导学生得出空间的两条直线有如下三种关系:
相交直线:同一平面内,有且只有一个公共点;
平行直线:同一平面内,没有公共点;
异面直线: 不同在任何一个平面内,没有公共点。
教师再次强调异面直线不共面的特点,作图时通常用一个或两个平面衬托,如下图:
共面直线
2、(1)师:在同一平面内,如果两条直线都与第三条直线平行,那么这两条直线互相平行。
在空间中,是否有类似的规律?
组织学生思考:
长方体 ABCD-A'B'C'D'中,
BB'∥AA',DD'∥AA',
BB'与 DD'平行吗?
生:平行
再联系其他相应实例归纳出公理 4
公理 4:平行于同一条直线的两条直线互相平行。
符号表示为:设 a、b、c 是三条直线
a∥b
c∥b
强调:公理 4 实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理 4 作用:判断空间两条直线平行的依据。
(2)例 2(投影片)
例 2 的讲解让学生掌握了公理 4 的运用
(3)教材 P47 探究
让学生在思考和交流中提升了对公理 4 的运用能力。
3、组织学生思考教材 P47 的思考题
(投影)
让学生观察、思考:
∠ADC 与 A'D'C'、∠ADC 与∠A'B'C'的两边分别对应平行,这两组角的大小关系如何?
生:∠ADC = A'D'C',∠ADC + ∠A'B'C' = 1800
教师画出更具一般性的图形,师生共同归纳出如下定理
等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补。
教师强调:并非所有关于平面图形的结论都可以推广到空间中来。
4、以教师讲授为主,师生共同交流,导出异面直线所成的角的概念。
(1)师:如图,已知异面直线 a、b,经过空间中任一点 O 作直线 a'∥a、b'∥b,我们把 a'
与 b'所成的锐角(或直角)叫异面直线 a 与 b 所成的角(夹角)。
(2)强调:
=>a∥c
① a'与 b'所成的角的大小只由 a、b 的相互位置来确定,与 O 的选择无关,为了简便,点
O 一般取在两直线中的一条上;
② 两条异面直线所成的角θ∈(0, );
③ 当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作 a⊥b;
④ 两条直线互相垂直,有共面垂直与异面垂直两种情形;
⑤ 计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
(3)例 3(投影)
例 3 的给出让学生掌握了如何求异面直线所成的角,从而巩固了所学知识。
(三)课堂练习
教材 P49 练习 1、2
充分调动学生动手的积极性,教师适时给予肯定。
(四)课堂小结
在师生互动中让学生了解:
(1)本节课学习了哪些知识内容?
(2)计算异面直线所成的角应注意什么?
(五)课后作业
1、判断题:
(1)a∥b c⊥a => c⊥b ( )
(1)a⊥c b⊥c => a⊥b ( )
2、填空题:
在正方体 ABCD-A'B'C'D'中,与 BD'成异面直线的有 ________ 条。
§2.1.3 — 2.1.4 空间中直线与平面、
平面与平面之间的位置关系
一、教学目标:
1、知识与技能
(1)了解空间中直线与平面的位置关系;
(2)了解空间中平面与平面的位置关系;
(3)培养学生的空间想象能力。
2、过程与方法
(1)学生通过观察与类比加深了对这些位置关系的理解、掌握;
(2)让学生利用已有的知识与经验归纳整理本节所学知识。
二、教学重点、难点
重点:空间直线与平面、平面与平面之间的位置关系。
难点:用图形表达直线与平面、平面与平面的位置关系。
三、学法与教学用具
1、学法:学生借助实物,通过观察、类比、思考等,较好地完成本节课的教学目标。
2、教学用具:投影仪、投影片、长方体模型
四、教学思想
(一)创设情景、导入课题
2
π
教师以生活中的实例以及课本 P49 的思考题为载体,提出了:空间中直线与平面有多少种位
置关系?(板书课题)
(二)研探新知
1、引导学生观察、思考身边的实物,从而直观、准确地归纳出直线与平面有三种位置关系:
(1)直线在平面内 —— 有无数个公共点
(2)直线与平面相交 —— 有且只有一个公共点
(3)直线在平面平行 —— 没有公共点
指出:直线与平面相交或平行的情况统称为直线在平面外,可用 a α来表示
a α a∩α=A a∥α
例 4(投影)
师生共同完成例 4
例 4 的给出加深了学生对这几种位置关系的理解。
2、引导学生对生活实例以及对长方体模型的观察、思考,准确归纳出两个平面之间有两种
位置关系:
(1)两个平面平行 —— 没有公共点
(2)两个平面相交 —— 有且只有一条公共直线
用类比的方法,学生很快地理解与掌握了新内容,这两种位置关系用图形表示为
α∥β α∩β= L
教师指出:画两个相互平行的平面时,要注意使表示平面的两个平行四边形的对应边平行。
教材 P51 探究
让学生独立思考,稍后教师作指导,加深学生对这两种位置关系的理解
教材 P51 练习
学生独立完成后教师检查、指导
(三)归纳整理、整体认识
教师引导学生归纳,整理本节课的知识脉络,提升他们掌握知识的层次。
(四)作业
1、让学生回去整理这三节课的内容,理清脉络。
2、教材 P52 习题 2.1 A 组第 5 题
α
β α β
L
§2.2.1 直线与平面平行的判定
一、教学目标:
1、知识与技能
(1)理解并掌握直线与平面平行的判定定理;
(2)进一步培养学生观察、发现的能力和空间想象能力;
2、过程与方法
学生通过观察图形,借助已有知识,掌握直线与平面平行的判定定理。
3、情感、态度与价值观
(1)让学生在发现中学习,增强学习的积极性;
(2)让学生了解空间与平面互相转换的数学思想。
二、教学重点、难点
重点、难点:直线与平面平行的判定定理及应用。
三、学法与教学用具
1、学法:学生借助实例,通过观察、思考、交流、讨论等,理解判定定理。
2、教学用具:投影仪(片)
四、教学思想
(一)创设情景、揭示课题
引导学生观察身边的实物,如教材第 55 页观察题:封面所在直线与桌面所在平面具有什么
样的位置关系?如何去确定这种关系呢?这就是我们本节课所要学习的内容。
(二)研探新知
1、投影问题
直线 a 与平面α平行吗?
若α内有直线 b 与 a 平行,
那么α与 a 的位置关系如何?
是否可以保证直线 a 与平面α平行?
学生思考后,师生共同探讨,得出以下结论
直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平
面平行。
简记为:线线平行,则线面平行。
符号表示:
a α
b β => a∥α
a∥b
2、例 1 引导学生思考后,师生共同完成
该例是判定定理的应用,让学生掌握将空间问题转化为平面问题的化归思想。
α
a
α
a
b
(三)自主学习、发展思维
练习:教材第 57 页 1、2 题
让学生独立完成,教师检查、指导、讲评。
(四)归纳整理
1、同学们在运用该判定定理时应注意什么?
2、在解决空间几何问题时,常将之转换为平面几何问题。
(五)作业
1、教材第 64 页 习题 2.2 A 组第 3 题;
2、预习:如何判定两个平面平行?
§2.2.2 平面与平面平行的判定
一、教学目标:
1、知识与技能
理解并掌握两平面平行的判定定理。
2、过程与方法
让学生通过观察实物及模型,得出两平面平行的判定。
3、情感、态度与价值观
进一步培养学生空间问题平面化的思想。
二、教学重点、难点
重点:两个平面平行的判定。
难点:判定定理、例题的证明。
三、学法与教学用具
1、学法:学生借助实物,通过观察、类比、思考、探讨,教师予以启发,得出两平面平行
的判定。
2、教学用具:投影仪、投影片、长方体模型
四、教学思想
(一)创设情景、引入课题
引导学生观察、思考教材第 57 页的观察题,导入本节课所学主题。
(二)研探新知
1、问题:
(1)平面β内有一条直线与平面α平行,α、β平行吗?
(2)平面β内有两条直线与平面α平行,α、β平行吗?
通过长方体模型,引导学生观察、思考、交流,得出结论。
两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。
符号表示:
a β
b β
a∩b = P β∥α
a∥α
b∥α
教师指出:判断两平面平行的方法有三种:
(1)用定义;
(2)判定定理;
(3)垂直于同一条直线的两个平面平行。
2、例 2 引导学生思考后,教师讲授。
例子的给出,有利于学生掌握该定理的应用。
(三)自主学习、加深认识
练习:教材第 59 页 1、2、3 题。
学生先独立完成后,教师指导讲评。
(四)归纳整理、整体认识
1、判定定理中的线与线、线与面应具备什么条件?
2、在本节课的学习过程中,还有哪些不明白的地方,请向老师提出。
(五)作业布置
第 65 页习题 2.2 A 组第 7 题。
§2.2.3 — 2.2.4 直线与平面、平面与平面平行的性质
一、教学目标:
1、知识与技能
(1)掌握直线与平面平行的性质定理及其应用;
(2)掌握两个平面平行的性质定理及其应用。
2、过程与方法
学生通过观察与类比,借助实物模型理解性质及应用。
3、情感、态度与价值观
(1)进一步提高学生空间想象能力、思维能力;
(2)进一步体会类比的作用;
(3)进一步渗透等价转化的思想。
二、教学重点、难点
重点:两个性质定理 。
难点:(1)性质定理的证明;
(2)性质定理的正确运用。
三、学法与教学用具
1、学法:学生借助实物,通过类比、交流等,得出性质及基本应用。
2、教学用具:投影仪、投影片、长方体模型
四、教学思想
(一)创设情景、引入新课
1、思考题:教材第 60 页,思考(1)(2)
学生思考、交流,得出
(1)一条直线与平面平行,并不能保证这个平面内的所有直线都与这个直线平行;
(2)直线 a 与平面α平行,过直线 a 的某一平面,若与平面α相交,则直线 a 就平行于这
条交线。
在教师的启发下,师生共同完成
该结论的证明过程。
于是,得到直线与平面平行的性质定理。
定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
简记为:线面平行则线线平行。
符号表示:
a∥α
a β a∥b
α∩β= b
作用:利用该定理可解决直线间的平行问题。
2、例 3 培养学生思维,动手能力,激发学习兴趣。
例 4 性质定理的直接应用,它渗透着化归思想,教师应多做引导。
3、思考:如果两个平面平行,那么一个平面内的直线与另一个平面内的直线具有什么样的
位置关系?
学生借助长方体模型思考、交流得出结论:异面或平行。
再问:平面 AC 内哪些直线与 B'D'平行?怎么找?
在教师的启发下,师生
共同完成该结论及证明过程,
于是得到两个平面平行的性质定理。
定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。
符号表示:
α∥β
α∩γ= a a∥b
β∩γ= b
教师指出:可以由平面与平面平行得出直线与直线平行
4、例 5
以讲授为主,引导学生共同完成,逐步培养学生应用定理解题的能力。
(三)自主学习、巩固知识
练习:课本第 63 页
学生独立完成,教师进行纠正。
(四)归纳整理、整体认识
1、通过对两个性质定理的学习,大家应注意些什么?
2、本节课涉及到哪些主要的数学思想方法?
(五)布置作业
课本第 65 页 习题 2.2 A 组第 6 题。
§2.3.1 直线与平面垂直的判定
一、教学目标
1、知识与技能
(1)使学生掌握直线和平面垂直的定义及判定定理;
(2)使学生掌握判定直线和平面垂直的方法;
(3)培养学生的几何直观能力,使他们在直观感知,操作确认的基础上学会归纳、
概括结论。
2、过程与方法
(1)通过教学活动,使学生了解,感受直线和平面垂直的定义的形成过程;
(2)探究判定直线与平面垂直的方法。
3、情态与价值
培养学生学会从“感性认识”到“理性认识”过程中获取新知。
二、教学重点、难点
直线与平面垂直的定义和判定定理的探究。
三、教学设计
(一)创设情景,揭示课题
1、教师首先提出问题:在现实生活中,我们经常看到一些直线与平面垂直的现象,例
如:“旗杆与地面,大桥的桥柱和水面等的位置关系”,你能举出一些类似的例子吗?然后
让学生回忆、思考、讨论、教师对学生的活动给予评价。
2、接着教师指出:一条直线与一个平面垂直的意义是什么?并通过分析旗杆与它在地
面上的射影的位置关系引出课题内容。
(二)研探新知
1、为使学生学会从“感性认识”到“理性认识”过程中获取新知,可再借助长方体模
型让学生感知直线与平面的垂直关系。然后教师引导学生用“平面化”的思想来思考问题:
从直线与直线垂直、直线与平面平行等的定义过程得到启发,能否用一条直线垂直于一个平
面内的直线来定义这条直线与这个平面垂直呢?并组织学生交流讨论,概括其定义。
如果直线 L 与平面α内的任意一条直线都垂直,我们就说直线 L 与平面α互相垂直,记
作 L⊥α,直线 L 叫做平面α的垂线,平面α叫做直线 L 的垂面。如图 2.3-1,直线与平面
垂直时,它们唯一公共点 P 叫做垂足。并对画示表示进行说明。
L
p
α
图 2-3-1
2、老师提出问题,让学生思考:
(1)问题:虽然可以根据定义判定直线与平面垂直,但这种方法实际上难以实施。有
没有比较方便可行的方法来判断直线和平面垂直呢?
(2)师生活动:请同学们准备一块三角形的纸片,我们一起来做如图 2.3-2 试验:过△
ABC 的顶点 A 翻折纸片,得到折痕 AD,将翻折后的纸片竖起放置在桌面上(BD、DC 与桌面
接触),问如何翻折才能保证折痕 AD 与桌面所在平面垂直?
A
B D C
图 2.3-2
(3)归纳结论:引导学生根据直观感知及已有经验(两条相交直线确定一个平面),进
行合情推理,获得判定定理:
一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
老师特别强调:a)定理中的“两条相交直线”这一条件不可忽视;
b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思
想。
(三)实际应用,巩固深化
(1)课本 P69 例 1 教学
(2)课本 P69 例 2 教学
(四)归纳小结,课后思考
小结:采用师生对话形式,完成下列问题:
①请归纳一下获得直线与平面垂直的判定定理的基本过程。②直线与平面垂直的判定
定理,体现的教学思想方法是什么?
课后作业:
①课本 P70 练习 2
②求证:如果一条直线平行于一个平面,那么这个平面的任何垂线都和这条直线垂直。
思考题:如果一条直线垂直于平面内的无数条直线,那么这条直线就和这个平面垂直,
这个结论对吗?为什么?
§2.3.2 平面与平面垂直的判定
一、教学目标
1、知识与技能
(1)使学生正确理解和掌握“二面角”、“二面角的平面角”及“直二面角”、“两个平
面互相垂直”的概念;
(2)使学生掌握两个平面垂直的判定定理及其简单的应用;
(3)使学生理会“类比归纳”思想在数学问题解决上的作用。
2、过程与方法
(1)通过实例让学生直观感知“二面角”概念的形成过程;
(2)类比已学知识,归纳“二面角”的度量方法及两个平面垂直的判定定理。
3、情态与价值
通过揭示概念的形成、发展和应用过程,使学生理会教学存在于观实生活周围,从中
激发学生积极思维,培养学生的观察、分析、解决问题能力。
二、教学重点、难点。
重点:平面与平面垂直的判定;
难点:如何度量二面角的大小。
三、学法与教学用具。
1、学法:实物观察,类比归纳,语言表达。
2、教学用具:二面角模型(两块硬纸板)
四、教学设计
(一)创设情景,揭示课题
问题 1:平面几何中“角”是怎样定义的?
问题 2:在立体几何中,“异面直线所成的角”、“直线和平面所成的角”又是怎样定义
的?它们有什么共同的特征?
以上问题让学生自由发言,教师再作小结,并顺势抛出问题:在生产实践中,有许多
问题要涉及到两个平面相交所成的角的情形,你能举出这个问题的一些例子吗?如修水坝、
发射人造卫星等,而这样的角有何特点,该如何表示呢?下面我们共同来观察,研探。
(二)研探新知
1、二面角的有关概念
老师展示一张纸面,并对折让学生观察其状,然后引导学生用数学思维思考,并对以
上问题类比,归纳出二面角的概念及记法表示(如下表所示)
角 二面角
图形
A
边
顶点 O 边 B
A
梭 l β
B
α
定义
从平面内一点出发的两条射线(半
直线)所组成的图形
从空间一直线出发的两个半平面所组
成的图形
构成 射线 — 点(顶点)一 射线 半平面 一 线(棱)一 半平面
表示 ∠AOB 二面角α-l-β或α-AB-β
2、二面角的度量
二面角定理地反映了两个平面相交的位置关系,如我们常说“把门开大一些”,是指二
面角大一些,那我们应如何度量二两角的大小呢?师生活动:师生共同做一个小实验(预先
准备好的二面角的模型)在其棱上位取一点为顶点,在两个半平面内各作一射线(如图
2.3-3),通过实验操作,研探二面角大小的度量方法——二面角的平面角。
教师特别指出:
(1)在表示二面角的平面角时,要求“OA⊥L” ,OB⊥L;
(2)∠AOB 的大小与点 O 在 L 上位置无关;
(3)当二面角的平面角是直角时,这两个平
面的位置关系怎样?
承上启下,引导学生观察,类比、自主探究, β B
获得两个平面互相垂直的判定定理:
一个平面过另一个平面的垂线,则这两个平面垂直。 C O A
(三)应用举例,强化所学 α
例题:课本 P.72 例 3 图 2.3-3
做法:教师引导学生分析题意,先让学生自己动手推理证明,然后抽检学生掌握情况,
教师最后讲评并板书证明过程。
(四)运用反馈,深化巩固
问题:课本 P.73 的探究问题
做法:学生思考(或分组讨论),老师与学生对话完成。
(五)小结归纳,整体认识
(1)二面角以及平面角的有关概念;
(2)两个平面垂直的判定定理的内容,它与直线与平面垂直的判定定理有何关系?
(六)课后巩固,拓展思维
1、课后作业:自二面角内一点分别向两个面引垂线,求证:它们所成的角与二两角的
平面角互补。
2、课后思考问题:在表示二面角的平面角时,为何要求“OA⊥L、OB⊥L”?为什么∠
AOB 的大小与点 O 在 L 上的位置无关?
§2、3.3 直线与平面垂直的性质
§2、3.4 平面与平面垂直的性质
一、教学目标
1、知识与技能
(1)使学生掌握直线与平面垂直,平面与平面垂直的性质定理;
(2)能运用性质定理解决一些简单问题;
(3)了解直线与平面、平面与平面垂直的判定定理和性质定理间的相互联系。
2、过程与方法
(1)让学生在观察物体模型的基础上,进行操作确认,获得对性质定理正确性的认识;
(2)性质定理的推理论证。
3、情态与价值
通过“直观感知、操作确认,推理证明”,培养学生空间概念、空间想象能力以及逻
辑推理能力。
二、教学重点、难点
两个性质定理的证明。
三、学法与用具
(1)学法:直观感知、操作确认,猜想与证明。
(2)用具:长方体模型。
四、教学设计
(一)创设情景,揭示课题
问题:若一条直线与一个平面垂直,则可得到什么结论?若两条直线与同一个平面垂
直呢?
让学生自由发言,教师不急于下结论,而是继续引导学生:欲知结论怎样,让我们
一起来观察、研探。(自然进入课题内容)
(二)研探新知
1、操作确认
观察长方体模型中四条侧棱与同一个底面的位置关系。如图 2.3—4,在长方体
ABCD—A1B1C1D1 中,棱 AA1、BB1、CC1、DD1 所在直线都垂直于平面 ABCD,它们之间是有什么
位置关系?(显然互相平行)然后进一步迁移活动:已知直线 a⊥α 、b⊥α、那么直线 a、
b 一定平行吗?(一定)我们能否证明这一事实的正确性呢?
图 2.3-4 图 2.3-5
2、推理证明
引导学生分析性质定理成立的条件,介绍证明性质定理成立的特殊方法——反证法,
然后师生互动共同完成该推理过程 ,最后归纳得出:
垂直于同一个平面的两条直线平行。
(三)应用巩固
例子:课本 P.74 例 4
做法:教师给出问题,学生思考探究、判断并说理由,教师最后评议。
(四)类比拓展,研探新知
类比上面定理:若在两个平面互相垂直的条件下,又会得出怎样的结论呢?例如:如
何在黑板面上画一条与地面垂直的直线?
引导学生观察教室相邻两面墙的交线,容易发现该交线与地面垂直,这时,只要在黑
板上画出一条与这交线平行的直线,则所画直线必与地面垂直。然后师生互动,共同完成性
质定理的确认与证明,并归纳性质定理:
两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
(五)巩固深化、发展思维
思考 1、设平面α⊥平面β,点 P 在平面α内,过点 P 作平面β的垂线 a,直线 a 与平面α
具有什么位置关系?
A1
B
D1
A
C
a b
α
C1
B1
D
(答:直线 a 必在平面α内)
思考 2、已知平面α、β和直线 a,若α⊥β,a⊥β,a α,则直线 a 与平面α具有
什么位置关系?
(六)归纳小结,课后巩固
小结:(1)请归纳一下本节学习了什么性质定理,其内容各是什么?
(2)类比两个性质定理,你发现它们之间有何联系?
作业:(1)求证:两条异面直线不能同时和一个平面垂直;
(2)求证:三个两两垂直的平面的交线两两垂直。
本章小结
一、教学目标
1、知识与技能
(1)使学生掌握知识结构与联系,进一步巩固、深化所学知识;
(2)通过对知识的梳理,提高学生的归纳知识和综合运用知识的能力。
2、过程与方法
利用框图对本章知识进行系统的小结,直观、简明再现所学知识,化抽象学习为直观
学习,易于识记;同时凸现数学知识的发展和联系。
3 情态与价值
学生通过知识的整合、梳理,理会空间点、线面间的位置关系及其互相联系,进一步
培养学生的空间想象能力和解决问题能力。
二、教学重点、难点
重点:各知识点间的网络关系;
难点:在空间如何实现平行关系、垂直关系、垂直与平行关系之间的转化。
三、教学设计
(一)知识回顾,整体认识
1、本章知识回顾
(1)空间点、线、面间的位置关系;
(2)直线、平面平行的判定及性质;
(3)直线、平面垂直的判定及性质。
2、本章知识结构框图
平面(公理 1、公理 2、公理 3、公理 4)
空间直线、平面的位置关系
(二)整合知识,发展思维
1、刻画平面的三个公理是立体几何公理体系的基石,是研究空间图形问题,进行逻辑
推理的基础。
公理 1——判定直线是否在平面内的依据;
公理 2——提供确定平面最基本的依据;
公理 3——判定两个平面交线位置的依据;
公理 4——判定空间直线之间平行的依据。
2、空间问题解决的重要思想方法:化空间问题为平面问题;
3、空间平行、垂直之间的转化与联系:
4、观察和推理是认识世界的两种重要手段,两者相辅相成,缺一不可。
(三)应用举例,深化巩固
1、P.82 A 组第 1 题
本题主要是公理 1、2 知识的巩固与应用。
2、P.82 A 组第 8 题
本题主要是直线与平面垂直的判定与性质的知识巩固与应用。
(四)课后作业
1、阅读本章知识内容,从中体会知识的发展过程,理会问题解决的思想方法;
2、P.83 B 组第 2 题。
直线与直线的位置关系 直线与平面的位置关系 平面与平面的位置关系
直线与直线平行 直线与平面平行 平面与平面平行
直线与直线垂直 直线与平面垂直 平面与平面垂直