由莲山课件提供http://www.5ykj.com/ 资源全部免费
金华市六校2017年中考联合模拟数学试卷
考生须知:1. 全卷共4页,有3大题,24小题. 满分为150分,考试时间120分钟.
2. 本卷答案必须做在答题纸的对应位置上,做在试题卷上无效.
3. 请考生将姓名、考号填写在答题纸的对应位置上.
温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!
参考公式:二次函数y=ax2+bx+c图象的顶点坐标是.
试 卷 Ⅰ
说明:本卷共有1大题,10小题,每小题4分,共40分.请用2B铅笔在“答题纸”上将你认为正确的选项对应的小方框涂黑、涂满.
一、选择题(请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)
1、—3的绝对值是( )
A、3 B、 C、 D、
2.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,这个数用科学记数法表示为( )
A.44×108 B.4.4×109 C.4.4×108 D.4.4×1010
3.右图是由4个相同的小正方体组成的几何体,其俯视图为( )
A. B. C. D.
4.袋子中装有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的情况下,随机从袋子中摸出1个球.下面说法正确的是( )
A.这个球一定是黑球 B.这个球一定是白球
C.“摸出黑球”的可能性大 D.“摸出黑球”和“摸出白球”的可能性一样大
5.将抛物线y=2x2向上平移2个单位,再向右平移3个单位,所得抛物线的解析式为( )
A.y=2(x﹣3)2+2 B.y=2(x+3)2+2 C.y=2(x+3)2﹣2 D.y=2(x﹣3)2﹣2
6.某地下车库出口处安装了“两段式栏杆”,点A是栏杆转动的支点,点E是栏杆两段的联结点.当车辆经过时,栏杆AEF最多只能升起到如图所示的位置,其中AB⊥BC,EF∥BC,∠AEF=135°,AB=AE=1.3米,那么适合该地下车库的车辆限高标志牌为(栏杆宽度忽略不计.参考数据:≈1.4)( )
A. B. C. D.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
7.甲骑车到乙家研讨数学问题,中途因等候红灯停止了一分钟,之后又骑行了1.2千米到达了乙家.若甲骑行的速度始终不变,从出发开始计时,剩余的路程S(单位:千米)与时间t(单位:分钟)的函数关系的图象如图所示,则图中a等于( )
A.1.2 B.2 C.2.4 D.6
8. 把一张圆形纸片按如图所示方式折叠两次后展开,图中的虚线
表示折痕,则的度数是( )
A.120° B.135° C.150° D.165°
9.小明乘坐摩天轮转一圈,他距离地面的高度y(米)与旋转时间x(分)之间的关系可以近似地用二次函数来刻画.经侧试得部分数据如下表:
x/分
…
2.66
3.23
3.46
…
y/米
…
69.16
69.62
68.46
…
下列选项中,最接近摩天轮转一圈的时间的是( )
A.7分 B.6.5分 C.6分 D.5.5分
10.一椭圆形地块,打算分A、B、C、D四个区域栽种观赏植物,要求同一区域种同一种植物,相邻的两块种不同的植物,现有4种不同的植物可供选择,那么有( )种栽种方案.
A.60 B.72 C.84 D.96
试 卷 Ⅱ
说明:本卷共有2大题,14小题,共110分. 答题请用0.5毫米及以上的黑色签字笔书写在“答题纸”的对应位置上.
二、填空题(本题有6小题,每小题5分,共30分)
11.分解因式:xy2﹣9x= .
12.甲、乙两名同学投掷实心球,每人投10次,平均成绩为18米,方差分别为S甲2=0.1,S乙2=0.04,成绩比较稳定的是 (填“甲”或“乙”).
13.如图,⊙O的半径为5,点P是弦AB延长线上的一点,连接OP,若OP=8,∠P=30°,则弦AB的长为 。
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
14.如图,正方形ABCD位于第二象限,AB=1,顶点A在直线y=﹣x 上,其中A点的横坐标为﹣1,且两条边AB、AD分别平行于x轴、y轴,若双曲线y=(k≠0)与正方形ABCD有公共点.则k的取值范围是 。
15.如图,在矩形ABCD中,有一个小正方形EFGH,其中顶点E,F,G分别在AB,BC,FD上.连接DH,如果BC=13,BF=4,AB=12,则tan∠HDG的值为 .
16.如图,已知∠AOM=60°,在射线OM上有点B,使得AB与OB的长度都是整数,由此称B是“和谐点”,若OA=8,当B为“和谐点”时,AB和OB的长分别为 。
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22题,23题每题
12分,第24题14分,共80分.)
17、(1)计算:
(2)化简:
18.如图,在△ABC中:
(1)用直尺和圆规,在AB上找一点D,使点D到B、C两点的距离相等(不写作法.保留作图痕迹)
(2)连接CD,已知CD=AC,∠B=25°,求∠ACB的度数.
19.某校为更好地培养学生兴趣,开展“拓展课程走班选课”活动,随机抽查了部分学生,了解他们最喜爱的项目类型(分为书法、围棋、戏剧、国画共4类),并将统计结果绘制成如图不完整的频数分布表及频数分布直方图.
最喜爱的项目类型频数分布表
项目类型
频数
频率
书法类
18
a
围棋类
14
0.28
喜剧类
8
0.16
国画类
b
0.20
根据以上信息完成下列问题:
(1)直接写出频数分布表中a的值;
(2)补全频数分布直方图;
(3)若全校共有学生1500名,估计该校最喜爱围棋的学生大约有多少人?
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
20.如图,已知一次函数y=x+2与y=-2x+6的图象相交于点A,函数y=-2x+6的图象分别交x轴、y轴于点B、C,函数y=x+2的图象分别与x轴、y轴交于点E、D.
(1)求点A的坐标;
(2)求△ABE的面积.
21. 如图,一扇窗户用支架B-C-D固定,当窗户打开时,B、C、D三点在同一直线上,且∠BAD=900,当窗户关上时A、D、B、C依次落在同一直线上,现测得AB=16cm,AD=12cm.
(1) 求BC的长;
(2) 经测算,当∠BAD=1200时窗户透光效果最好,为达到最佳效果,AD应调整为多少厘米?
22.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某个矩形的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P,Q的“相关矩形”,如图为点P,Q的“相关矩形”示意图.
(1)已知点A的坐标为(1,0),
①若点B的坐标为(3,1),求点A,B的“相关矩形”的面积;
②点C在直线x=3上,若点A,C的“相关矩形”为正方形,求直线AC的表达式;
(3) 正方形RSKT顶点R的坐标为(-1,1),K的坐标为(2,-2),点M的坐标为(m,3),若在正方形RSKT边上存在一点N,使得点M,N的“相关矩形”为正方形,求m的取值范围.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
23.阅读下面材料:
小敏遇到这样一个问题:如图1,在△ABC中,DE∥BC分别交AB于D,交AC于E.已知CD⊥BE,CD=3,BE=5,求BC+DE的值.
小明发现,过点E作EF∥DC,交BC延长线于点F,构造△BEF,经过推理和计算能够使
问题得到解决(如图2).
(1)请回答:BC+DE的值为 .
(2)参考小明思考问题的方法,解决问题:
如图3,已知▱ABCD和矩形ABEF,AC与DF交于点G,AC=BF=DF,求∠AGF的度数.
如图4,已知:AB、CD交于E点,连接AD、BC,AD=3,BC=1.且∠B与∠D互为余角,∠A与∠C互为补角,则∠AED= 度,若CD=,求AB的长.
24. 如图,矩形ABCD,AB=2cm,AD=6cm,P、Q分别为两个动点,点P从B出发沿边BC
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
运动,每秒1cm,点Q从B出发沿边B—C—D运动,每秒2cm。
(1)若P、Q两点同时出发,其中一点到达终点时另一点也随之停止,设△BPQ面积为S,时间为t秒,求S关于t的函数关系式及自变量的取值范围;
(2)若R为AD中点,连接RP、RQ,当以R、P、Q为顶点的三角形与△BPQ相似(含全等)时,求t的值;
(3)如图(3)M为AD边上一点,AM=2,点Q在1.5秒时便停止运动,点P继续在BC上运动,AP与BQ交于点E,PM交CQ于点F,设四边形QEPF的面积为y,求y的最大值.
参考答案
一、选择题(请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分)
1
2
3
4
5
6
7
8
9
10
A
B
C
C
A
B
B
C
C
C
二、填空题(本题有6小题,每小题5分,共30分)
11. x(y+3)(y﹣3) 12. 乙 13. 6 14.-4≤k≤-1 15.
16.或或或.(AB=X,OB=Y)
三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22题,23题每题
12分,第24题14分,共80分.)
17.解:(1)原式=2+3-3=2 (4分)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2)原式=
=
=. (4分)
18.解:(1)如图所示:
故点D为所求(4分)
(2)由(1)得DC=DB,
∴∠BCD=∠B=25°,
∴∠ACD=∠B+∠BCD=50°,
∵CD=AC,
∴∠A=∠ADC=50°,
∴∠ACB=180°﹣∠A﹣∠B=180°﹣50°﹣25°=105°.(4分)
19.解:(1)14÷0.28=50(人),
a=18÷50=0.36. (2分)
(2)b=50×0.20=10,如图,
(3分)
(3)1500×0.28=420(人),(3分)
答:若全校共有学生1500名,估计该校最喜爱围棋的学生大约有420人.
20. 解:(1)A() (4分)
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
(2) (4分)
21.解:(1)设BC=X,则DC=X+4 勾股定理得
得X=8cm (5分)
(2)设AE=X ,DE=X 勾股定理得
得X= 则AD= cm (5分)
22. 解:(1)①∵A(1,0),B(3,1)
由定义可知:点A,B的“相关矩形”的底与高分别为2和1,
∴点A,B的“相关矩形”的面积为2×1=2;(2分)
②由定义可知:AC是点A,C的“相关矩形”的对角线,
又∵点A,C的“相关矩形”为正方形
∴直线AC与x轴的夹角为45°,
设直线AC的解析为:y=x+m或y=﹣x+n
把(1,0)分别y=x+m,
∴m=﹣1,
∴直线AC的解析为:y=x﹣1,
把(1,0)代入y=﹣x+n,
∴n=1,
∴y=﹣x+1,
综上所述,若点A,C的“相关矩形”为正方形,直线AC的表达式为y=x﹣1或y=﹣x+1; (4分)
(2)设直线MN的解析式为y=kx+b,
∵点M,N的“相关矩形”为正方形,
∴由定义可知:直线MN与x轴的夹角为45°,
∴k=±1,
∵点N在正方形边上,
∴当直线MN与正方形有交点时,点M,N的“相关矩形”为正方形,
当k=1时,
作过R与K的直线与直线MN平行,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
将(-1,1)和(2,-2)分别代入y=x+b
得b=2 或b=-4
把M(m,3)代入y=x+2和y=x-4,
得m=1 m=7
∴1≤m≤7,
当k=﹣1时,把(-1,-2) (2,1)代入y=﹣x+b,
∴b=-3 b=3,
把M(m,3)代入y=-x-3和y=-x+3,
得m=0 m=6
∴0≤m≤6;
综上所述,当点M,N的“相关矩形”为正方形时,m的取值范围是:1≤m≤7或0≤m≤6 (6分)
23.解:(1)∵DE∥BC,EF∥DC,
∴四边形DCFE是平行四边形,
∴EF=CD=3,CF=DE,
∵CD⊥BE,
∴EF⊥BE,
∴BC+DE=BC+CF=BF===;
(2)解决问题:连接AE,CE,如图.
∵四边形ABCD是平行四边形,
∴AB∥DC.
∵四边形ABEF是矩形,
∴AB∥FE,BF=AE.
∴DC∥FE.
∴四边形DCEF是平行四边形.
∴CE∥DF.
∵AC=BF=DF,
∴AC=AE=CE.
∴△ACE是等边三角形.
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴∠ACE=60°.
∵CE∥DF,
∴∠AGF=∠ACE=60°.(4分)
∵∠B与∠D互为余角,∠A与∠C互为补角,
∴∠D+∠B=90°,∠A+∠C=180°.
∵∠A+∠D+∠AED=180°,
∠B+∠C+∠BEC=180°,
∴∠A+∠D+∠AED+∠B+∠C+∠BEC=360°.
∴∠AED+∠BEC+90°+180°=360°.
∴∠AED+∠BEC=90°.
∵∠AED=∠BEC,
∴∠AED=∠BEC=45°.(2分)
以CD、CB为邻边作平行四边形BCDF,连接AF,如图2所示,
∵四边形BCDF是平行四边形,
∴BF=DC=4,DF=BC=1,∠DFB=∠C=180°﹣∠DAB,DC∥BF.
∴∠ABF=∠AED=45°.
在四边形ABFD中,
∵∠DAB+∠ABF+∠BFD+∠ADF=360°,∠DFB=180°﹣∠DAB,∠ABF=45°,
∴∠ADF=135°.
DF=1 , DG=FG=
在△AGF中,
∵AG=3.5,DG=,∠G=90°,
∴AF=5
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
BF=4,FH=BH=4,AF=5,AH=3
∴AB的长为7.(4分)
24. 解:(1) (2分)
(2分)
(2) 当∠RQP=90时,△ARQ∽△BQP,,AQ=1.5,BQ=0.5,t=0.25
当∠QPR=90时,△HPR∽△BQP,,PH=4 不成立
当Q在AR上时,若QR=BP,则△RPQ全等于△BQP,, (6分)
(3)连接PQ,则BP=t,则PC=6﹣x,
∵AM∥DP,
由莲山课件提供http://www.5ykj.com/ 资源全部免费
由莲山课件提供http://www.5ykj.com/ 资源全部免费
∴,
∴
∵S△APQ=AB•AQ=t,
∴S△abe=,
同理可得,S△PQF=,
∴y=+=
当t=3时,上式等号成立,
∴y的最大值为:.(4分)
由莲山课件提供http://www.5ykj.com/ 资源全部免费