人教版九年级下册数学习题课件27.2.5用两角相等关系判定三角形相似
加入VIP免费下载

人教版九年级下册数学习题课件27.2.5用两角相等关系判定三角形相似

ID:723461

大小:1.13 MB

页数:27页

时间:2021-06-10

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
RJ版九年级下 第二十七章 相 似 27.2 相似三角形 第5课时 用两角相等关系判定三角形 相似 习题链接 4 提示:点击 进入习题 答案显示 6 7 1 2 3 5C B C C B 8 2或4.5D ①②④ 习题链接 提示:点击 进入习题 答案显示 10 11 12 9 见习题 见习题 见习题 见习题 夯实基础 夯实基础 【答案】C 夯实基础 2.【中考·枣庄】如图,在△ABC中,∠A=78°, AB=4,AC=6.将△ABC沿图示中的虚线剪开, 剪下的阴影三角形与原三角形不相似的是(  ) C 夯实基础 夯实基础 【点拨】如图,连接OE. ∵四边形ABCD是正方形,∴AC⊥BD,OA=OC=OB= OD.∴∠BOC=90°.∵BE=EC,∴∠EOB=∠EOC=45°. ∵∠EOB=∠EDB+∠OED,∠EOC=∠EAC+∠AEO, ∴∠AED+∠EAC+∠EDB=∠EAC+∠AEO+∠OED+ ∠EDB=90°,故①正确;连接AF.∵PF⊥AE, ∴∠APF=90°.又∵∠ABF=90°, ∴A,P,B,F四点共圆.∴∠AFP=∠ABP =45°.∴∠PAF=∠PFA=45°.∴AP=FP,故②正确; 夯实基础 夯实基础 【答案】B 夯实基础 D 夯实基础 5.如图,在Rt△ABC中,∠ACB=90°,CD是斜边 AB上的高,若得到CD2=BD·AD这个结论可证明(   ) A.△ADC∽△ACB B.△BDC∽△BCA C.△ADC∽△CDB D.无法判断 C 夯实基础 *6.【2020·牡丹江】如图,在矩形ABCD中,AB=3, BC=10,点E在BC边上,DF⊥AE,垂足为F.若DF =6,则线段EF的长为(  ) A.2 B.3 C.4 D.5 夯实基础 【答案】B 夯实基础 夯实基础 【答案】①②④ 夯实基础 8.如图,在△ABC中,AB=9,AC=6,点E在AB上, 且AE=3,点F在AC上,连接EF,若△AEF与 △ABC相似,则AF=________.2或4.5 易错警示:利用相似三角形的性质时,要注意相似比的顺 序.分类讨论时,要注意对应关系的变化,防止遗漏. 整合方法 9.【2020·苏州】如图,在矩形ABCD中,E是BC的中 点,DF⊥AE,垂足为F. (1)求证:△ABE∽△DFA; 证明:∵四边形ABCD是矩形, ∴AD∥BC,∠B=90°.∴∠AEB=∠DAF. ∵DF⊥AE,∴∠AFD=90°=∠B. ∴△ABE∽△DFA. 整合方法 (2)若AB=6,BC=4,求DF的长. 整合方法 10.【2020·济宁】如图,在△ABC中,AB=AC,点P 在BC上. ( 1 ) 求 作 : △ P C D , 使 点 D 在 A C 上 , 且 △PCD∽△ABP(要求:尺规作图,保留作图痕迹, 不写作法); 解:如图,作出∠APD=∠ABP, 即可得到△PCD∽△ABP. 整合方法 (2)在(1)的条件下,若∠APC=2∠ABC,求证: PD∥AB. 证明:∵∠APC=2∠ABC,∠APD=∠ABC, ∴∠APC=2∠APD.∴∠APD=∠DPC. ∴∠DPC=∠ABC.∴PD∥AB. 探究培优 (1)求点A的坐标; 解:令y=ax-3a(a≠0)中y=0, 即ax-3a=0,解得x=3, ∴点A的坐标为(3,0). 探究培优 (2)当S△AOC=3时,求a和k的值. 探究培优 探究培优 (1)求证:BC是⊙O的切线; 探究培优 证明:∵AB是⊙O的直径,∴∠AEB=90°. ∴∠EAB+∠EBA=90°. ∵∠CBE=∠BDE,∠BDE=∠EAB, ∴∠EAB=∠CBE. ∴∠EBA+∠CBE=90°,即∠ABC=90°. ∴CB⊥AB.又∵AB是⊙O的直径, ∴BC是⊙O的切线. 探究培优 (2)若BD平分∠ABE,求证:AD2=DF·DB.

资料: 3.2万

进入主页

人气:

10000+的老师在这里下载备课资料