小数的意义
教学内容:西师版四年级下册第五单元例 1、例 2
教学目标:
1、经历细分计数单位的过程,初步理解小数的意义,沟通小数与分
数的内在联系,知道一位小数与十分之几,两位小数与百分之几,三
位小数与千分之几的关系。
2、通过观察比较,理解和掌握小数的计数单位及它们相邻单位之间
的进率也是 10,沟通小数与整数之间的联系,使学生逐步建构起完
整的认数体系,有效培养学生的数感。
3、经历自主探究、合作交流的过程,激发学生学习的兴趣,同时渗
透数域扩展、归纳类推思想、极限思想、化繁为简的思想,感受数学
的精确性和应用性。
教学重点:理解小数的意义
教学难点:理解小数的意义及相邻计数单位间的进率。
教学过程:
一、引入新课,为沟通小数与整数的关系作好铺垫。
师:《三字经》大家都吟诵过吧,《三字经》中有几句和数学有关的句
子,我们一起大声吟诵出来吧。课件出示:一而十,十而百,百而千,
千而万
学生吟诵。
师:我们从小认数,是从哪个数开始的?
生:1
师:10 个 1 是?(10)10 个 10 是?(100)10 个 100 是?(1000)
10 个 1000 是?(10000)写得完吗?(写不完)
师:1 到 10 扩大了多少倍(10 倍),10 到 100 扩大了(10 倍),100
到 1000 扩大了(10 倍),1000 到 10000 扩大了(10 倍)
师:难道 1 只能 10 倍 10 倍地扩大吗?
生:它还能缩小
师:如果让你在 1 的右边填一个数,你觉得应该是几?
生:0.1.
二:新课(感受小数的意义是细分计数单位)
(一)变抽象为直观,认识模型图,理解一位小数的意义和它的计数
单位。
师:0.1 这个数有多大?如果把一个正方形看作“1”,怎样表示 0.1?
生:把这个正方形平均分成 10 份,其中的 1 份就是 0.1。
师:也就是说 0.1 表示的是(十分之一),0.3 怎么表示呢?
生:把正方形平均分成 10 份,取其中的 3 份。
师:那 0.3 表示的是(十分之三),它里面有多少个 0.1 呢?
生:3 个。
师:空白部分是多少呢?为什么?
生:0.7,因为它是十分之七。
师:它里面有多少个 0.1 呢?
生:7 个。
师:这样的小数你还能说吗?它们分别是表示什么呢?
生说。
师:这些小数小数点右边有几位数?(一位)所以我说把它们称为一
位小数。一位小数表示什么呢?
生:十分之几。
师:在这些小数中,哪一个小数最重要?
生:0.1
师:为什么呢?
生:因为其他一位小数都是 0.1 累加起来的。
师:0.3 是由(3)个 0.1 累加起来的,0.7 是由(7)个 0.1 累加起来
的,0.8 是由(8)个 0.1 累加起来的。所以 0.1 是一位小数的计数单
位。
师:3 个 0.1 和 7 个 0.1 合起来是几个 0.1(10 个),10 个 0.1 就是多
少呢?(1)(沟通 0.1 和 1 的关系)
(二)变图解为探究,创造模型图,类推两位小数的意义及其计数单
位。
师:刚才我们把 1 平均分成 10 份,取其中的 1 份或几份,得到了一
位小数,知道了一位小数表示十分之几。那 0.1 能不能再分呢?0.1
的右边又该写哪一个数了呢?
生:0.01
师:0.01 多大呢?老师给大家准备了一个正方形,用“1”表示,把
正方形已经平均分成了 10 份,现在请小组合作,在图上用阴影表示
出 0.01.
学生自主探究,教师巡视指导。
方法一:将正方形再平均分,将“1”平均分成了 100 份,取其中的
1 份。
方法二:将其中的 0.1 平均分成 10 份,取其中的 1 份。
小组展示交流。
师:(对方法一)按照你们的理解,0.01 就是 100 份当中取(1)份,
也就是(百分之一)。孩子们赞成吗?
生:赞成。
师:(对方法二)这也是表示 0.01 吗?它是百分之一吗?
生:这也是平均分成了 100 份,只不过有的隐藏了。
师:这是什么意思呀,我们一起看看吧
课件动态呈现分的过程
师:当把 0.1 平均分成 10 份的时候,1 被平均分成了 100 份。其中的
1 份就是 0.01,所以 0.01 就是(百分之一)
师:如果取 8 份是多少呢?
生:0.08.
师:它表示什么呢?它里面有几个 0.01?
生:它表示百分之八,它里面有 8 个 0.01
师:这样的小数谁再来说几个?它们分别表示什么?
生说。
师:这些小数都是几位小数呢?它们表示什么呢?
生:两位小数,它们表示百分之几
师:这些小数的计数单位是哪一个呢?
生:0.01
师:为什么?
生:因为其他的两位小数都是由 0.01 累加而成的。
师:10 个 0.01 是 1 个(0.1)。(沟通 0.01 和 0.1 的关系)
(三)根据模型图,想像三位小数的产生过程,理解三位小数的意义
和计数单位。
师:0.01 还可以继续分吗?
生:可以
师:你们准备怎么分呢?
生:把 0.01 平均分成 10 份,取其中的 1 份。
课件展示学生的分法。
师:把 0.01 平均分成 10 份,整个 1 就被平均分成了 1000 份,取其
中的 1 份,所以 0.001 表示的是(千分之一),孩子可真棒,学会了
类推的方法。
师:取 9 份是多少呢?
生:0.009,表示千分之九。里面有 9 个 0.001
师:还能说出其他的三位小数吗?
生说。
师:三位小数的计数单位是?(0.001)
师:10 个 0.001 是 1 个?(0.01)
师:0.001 还可以继续分吗?
生:可以,把 0.001 平均分成 10 份,整个 1 被平均分成 10000 份,
其中的 1 份就是 0.0001,表示万分之一。
师:分得完吗?(分不完)
(四)沟通小数与整数之间的内在联系,完善小数认数系统。
师:回过头来看看,“1”不仅可以十倍十倍地?(扩大),扩到无穷
大,也可以 10 份 10 份地分,分到无穷小。大家都知道 1、10、100、
1000……都是整数的计数单位,它们都有自己相应的位置,1 所在的
数位是?(个位),10 所在的数位是(十位),百所在的数位是(百
位),千所在的位置是(千位)。
师:而一位小数的计数单位是(0.1)表示(十分之一),所以它所在
的数位是十分位,0.01 所在的位置是(百分位),0.001 所在的位置就
是(千分位),后面应该是什么位?(万分位),后面还有吗?(还有),
无穷无尽。
(五)小结小数的意义
师:孩子们,今天我们学习了什么?(小数的意义)我们是怎么得到
小数的?(把 1 不停地 10 份 10 份的分)越分越细,对,我们通过细
分计数单位得到了小数。
三、感受小数的价值(精确表达)
师:人们干嘛要创造小数呢,小数有什么用呢?老师给大家带来了一
段视频。
课件播放刘翔比赛视频。
师:刘翔的成绩是 12 秒多,奥运记录也是 12 秒多,到底刘翔有没有
打破奥运记录呢?怎么办?
生:用小数来表示。
师:也就是把 1 秒的时间继续分,分得越细越精确。最后刘翔的成绩
用小数表达出来是 12.91 秒,而奥运记录是 12.95 秒。
师:有的时候,生活中用整数不足以精确表达,聪明的人们就创造了
小数。
四、巩固拓展
1、用分数和小数表示图中阴影
2、在数线上写出小数
3、名人名言中的小数
4、介绍黄金小数(感受数学在生活中的应用)