1、二次函数的一般形式是怎样的?
y=ax²+bx+c(a,b,c是常数,a≠ 0)
2、下列函数中,哪些是二次函数?
2)1()2)(2()5( xxxy
x
xy 1)2( 2
32)4( 2 xxy
23)1( 2 xy ( )
( )
( )
否
是
否
否( )
No
Image
)3)(2()3( xxy 是
( )
(6) y=ax +bx+c ⒉
你会用描点法画二次函数y=x2的图象吗?
观察y=x2的表达式,选择适当x值,并计算
相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 …
y=x2 … …9 4 1 10 4 9
x
y
0-4 -3 -2 -1 1 2 3 4
10
8
6
4
2
-2
描点,连线 y=x2
?
二次函数 y = x2的图象是一条曲线,它的形状类似于投篮球时球在空中
所经过的路线,只是这条曲线开口向上,这条曲线叫做抛物线 y = x2 ,
二次函数y = x 2 的图象是轴对称图形,
一般地,二次函数 y = ax2 + bx + c(a≠0)
的图象叫做抛物线y = ax2 + bx + c
1 2 3 4 5 x
1
2
3
4
5
6
7
8
9
10 y
o-1-2-3-4-5
实际上, 二次函数的图象都是抛物线,
对称轴是y轴
2xy
这条抛物线是轴对称
图形吗?如果是,
对称轴是什么?
抛物线与对称轴
有交点吗?
2xy 当x0 (在对称轴的
右侧)时, y随着x的增大而
增大.
当x=-2时,y=4
当x=-1时,y=1
当x=1时,y=1
当x=2时,y=4
抛物线y=x2在x轴的
上方(除顶点外),顶点
是它的最低点,开口
向上,并且向上无限
伸展;当x=0时,函数y
的值最小,最小值是0.
(1)二次函数y=-x2的图象是什么形状?
你能根据表格中的数据作出
猜想吗?
x
y=-x2
… -3 -2 -1 0 1 2 3 …
… -9 -4 -1 0 -1 -4 -9 …
在学中做—在做中学
做一做
x
y
0
-4 -3 -2 -1 1 2 3 4
-10
-8
-6
-4
-2
2
-1
描点,连线
y=-x2
?
2xy
当x0 (在对称轴
的右侧)时, y随着
x的增大而减小.
y
当x= -2时,y= -4
当x= -1时,y= -1
当x=1时,y= -1
当x= 2时,y= -4
抛物线y= -x2在x轴的
下方(除顶点外),顶点
是它的最高点,开口
向下,并且向下无限
伸展;当x=0时,函数y
的值最大,最大值是0.
1.抛物线y=ax2的顶点是原点,
对称轴是y轴.
2.当a>0时,抛物线y=ax2在x轴的上方(除顶点外),
它的开口向上,并且向上无限伸展;
当a0时,在对称轴的左侧,y随着x的增大而减小;在
对称轴右侧,y随着x的增大而增大.当x=0时函数y的值最小.
当a