沪科版(2012)初中数学八年级下册19.3.4菱形的判定教案
加入VIP免费下载

沪科版(2012)初中数学八年级下册19.3.4菱形的判定教案

ID:675732

大小:50.86 KB

页数:5页

时间:2021-04-18

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
《菱形的判定》教学设计 一、教材分析 在本章的学习中,教材已研究了平行四边形性质和判定、矩形性质和判定、菱形的定义 和性质,学生已初步了解并掌握了特殊四边形的一些判定方法。本节知识,既是前面所学知 识的延续和拓展,也为下一节学习正方形和其他平面图形作必要的知识储备。 本节课,将进一步丰富学生的数学活动经验,促进学生观察、分析、归纳、概括问题的 能力和审美意识的发展,进一步渗透了“转化、类比”等数学思想方法。 二、学情分析 三、学生在此前已经学习了平行四边形的性质和判定、矩形的性质和判定、菱形的定 义和性质,掌握了菱形性质的简单应用,学生在此基础上探究菱形的判定方法。 由于八年级的学生对事物的感性认识丰富,正在向抽象思维转型,所以本节课本节课 让学生在丰富的实践活动中,利用菱形的判定方法解决问题,促使学生从感性认识向理性思 维发展,从形象思维向抽象思维转型。 三、教学目标及重、难点分析 【教学目标】 1.会判定一个四边形或平行四边形是菱形,会合理论证和计算。 2.经历探究菱形判定条件的过程,并会利用菱形的判定方法解决实际问题。 3.从学生已有的知识出发,让学生在动手操作、讨论交流、归纳总结的过程中,加深对 菱形判定方法的理解,感受身边的数学,以及合作学习的成功,培养主动探求、勇于实践的 精神,激发学习数学的热情,树立学好数学的信心。 【重点】菱形的判定方法。 【难点】引导学生探究菱形的判定方法,并利用菱形的判定方法解决实际问题。 四、教学策略分析 基于对教材和学生认知规律的考虑,在讲授新课时,我会引导学生回顾平行四边形、矩 形的判定方法,然后引导学生通过数学活动猜想菱形的判定方法,再利用图形验证猜想,最 后进行逻辑证明。 为了充分尊重学生、体现学生学习的主体作用,本节课,我将充分发挥自主学习与合作 学习的优势,让每个学生都活动起来,参与到整个教学中去。同时把时间给学生,让他们有 足够的思考时间和充分的表达机会,鼓励他们创新思维和严谨的表达。 五、教学过程设计 (一)再回首,复习回顾 菱形的性质:(板书) 1、定义 2、四条边都相等; 3、对角相等,邻角互补,内角和 360°; 3、两条对角线互相垂直平分; 4. 菱形是一个中心对称图形,也是一个轴对称图形。 【问题引入】本章我们一直在研究四边形,那么一个四边形具备了什么条件才能成为平行四 边形呢?然后我们又学了两种特殊的平行四边形,矩形和菱形。那么,一个四边形具备了什 么条件才能成为矩形呢?一个四边形具备了什么条件才能成为菱形呢?菱形还有其他的判 定方法吗? 【设计意图】本环节,我将引导学生回忆平行四边形、矩形、菱形的判定方法,培养学生归 纳、类比思想。 因为本环节的问题相对比较基础,所以我会把提问的对象锁定在基础相对薄弱的学生, 激发他们学习数学的热情。 (二)合作探究,感悟新知 【探究活动】 探究一:用一长一短两根细木条,在它们的中点处固定一个小钉,做成一个可以转动的十 字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形? 探究二:先画两条等长的线段 AB、AD,然后分别以 B、D 为圆心,AB 为半径画弧,得到 两弧的交点 C,连接 BC、CD,就得到了一个四边形,猜一猜,这是什么四边形?根据画图, 你能得到还有什么方法能判定一个四边形是菱形吗? 猜想 1:四条边相等的四边形是菱形;(板书) 猜想 2:对角线互相垂直平分的四边形是菱形(板书) 2、验证猜想 猜想 1:四条边都相等的四边形是菱形. 已知:如图,四边形 ABCD,AB=BC=CD=DA 求证:四边形 ABCD 是菱形 . 证明: ∵AB=CD,BC=AD ∴四边形 ABCD 是平行四边形(两组对边分别相等的 四边形是平行四 边形) 又∵AB=BC ∴四边形 ABCD 是菱形(有一组邻边相等的平行四边形是菱形) 判 定 定 理 1 : 四 条 边 都 相 等 的 四 边 形 是 菱 形 。 几 何 语 言 : 在 四 边 形 ABCD 中, ∵AB=BC=CD=DA ∴四边形 ABCD 是菱形. 猜想 2:两条对角线相互垂直的平行四边形是菱形。 已知:平行四边形 ABCD 中,对角线 AC、BD 互相垂直。 求证:四边形 ABCD 是菱形. 证 明:∵ 四边形 ABCD 是平行四边形, ∴ OA=OC(平行四边形的对角线相互平分). 又∵ AC⊥BD, ∴ BD 所在直线是线段 AC 的垂直平分线, ∴ AB=BC, ∴ 四边形 ABCD 是菱形 (有一组邻边相等的平行四边形是菱形). 判定定理 2:对角线互相垂直的平行四边形 是菱形. 几何语言:∵平行四边形 ABCD AC⊥BD ∴ 四边形 ABCD 是菱形. 【活动方案】在本次探究活动前,将班级里的学生按照男女比例、学习程度、 性格爱好 等因素,分成八个小组,每组六个成员,每组由一个组长负责。课前,每个人配发一份学案, 每个组一块小黑板,组员先独立思考,然后小组合作交流,教师巡视指导,最后由组长指派 成员,进行板书和汇报,其他不展示的同学把结果写在学案上。 【设计意图】从现实的情景出发,通过学生小组合作交流,经历亲自动手操作,到理论验证 的过程,促进学生从感性认识向理性认识发展。 最后,通过数学的活动,归纳证明一个四边形是菱形的方法。 (三)综合应用,提升思维 【综合应用】 1.判断下列说法是否正确?为什么? (1)对角线互相垂直的四边形是菱形; (2)对角线互相垂直平分的四边形是菱形; (3)一组邻边相等的四边形是菱形; 2.如图,平行四边形 ABCD 的两条对角线 AC、BD 相交于点 O,AB= 5 ,AC=8,DB=6, 求证:四边形 ABCD 是菱形. 3.如图,两张等宽的纸条交叉重叠在一起,重叠的部分 ABCD 就是菱形,为什么? 【设计意图】本环节,我将出示一组有梯度的练习题,及时的巩固应用。第一题相对比 较简单,我将采取口答的形式。第二题和第三题是体现了菱形判定方法的综合应用,是本节 课的一个重点和难点。为了突出重点,攻克难点,我依然会采取小组合作交流的方式,有由 学生在小组合作交流中自主探索化解重难点,真正做到“学生是数学学习的主体”。 本环节,让学生在亲身实践中,加深对菱形判定方法的理解,训练学生的逻辑推理能力, 以及书写的条理性和语言表达能力。 (四)课堂小结,自我评价 1.菱形各具有那些判定方法? 2.本节课,你已经掌握的知识有哪些?你不明白或需要进一步理解的地方是什么? 【设计意图】 本环节,我引导学生归纳总结四边形、平行四边形、菱形的判定方法, 让学生从图形的变化中,领悟到各种图形之间的内在联系。最后通过学生的自我评价,使学 生通过对本节课的回顾,培养归纳总结能力,形成一个完整的认知体系,体现了学生是教学 主体的新课程理念。 (五)课后作业,巩固练习 必做题:P102-103 第 6 题、第 10 题 选做题:如图,DE,EF 是△ABC 的两条中位线,我们探究的问题是:这两条中位线和三角形 的两条边所围成的四边形的形状与原三角形的形状有什么关系.建议按下列步骤探索: (1)围成的四边形是否必定是平行四边形? (2)在什么条件下,围成的四边形是菱形? (3)在什么条件下,围成的四边形是矩形? (4)你还能发现其他什么结论吗? 【设计意图】必做题:让学生在作业中,发现问题,及时查缺补漏。选做题:巩固提高, 使各层次的学生得到不同的发展。

资料: 3.2万

进入主页

人气:

10000+的老师在这里下载备课资料