第二十章 章节复习
教学目标
了解平均数、众数、中位数、极差、方差的计算公式,会找一组数据的中位数、众数、
极差,能进行计算和分析数据的特性.
教学重难点
重点:掌握平均数、方差的计算公式,会找一组数据的中位数、众数、极差,能进行计算和
解决生产、生活中的有关问题
难点:选择合适的统计量表示数据的集中趋势.
教学设计
一、 知识要点
二、知识训练
1、若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是 ( )
A.44 B.45
C.46 D.47
2、下列几个常见统计量中能够反映一组数据波动范围的是( )
A.平均数 B.中位数 C.众数 D.极差
3、.数据 1,2,4,0,5,3,5,中位数和众数分别是 ( )
A.3 和 2 B.3 和 3
C.0 和 5 D.3 和 5
4、数据 0,-3,1,-2,-3,2,3 的方差是( )
A -3 B 3
C -6 D 6
5、两名篮球运动员进行投篮比赛,若甲运动员的成绩方差为 0.12,乙运动员成绩的方差为 0.079,
由此估计, 的成绩比的 成绩稳定.
6、一组数据 3、-1、0、2、X 的极差是 5,且 X 为自然数,则 X= .
三、作业布置:
1、已知样本 9.9、10.3、10.3、9.9、10.1,则样本极差是( )
A. 0.4 B.16 C.0.2 D.无法确定
2、在一次数学考试中,第一小组 14 名学生的成绩与全组平均分的差是 2、3、-5、10、12、8、2、
-1、4、-10、-2、5、5、-5,那么这个小组的平均成绩是( )
A. 87 B. 83 C. 85 D 无法确定
3、已知一组数据 2.1、1.9、1.8、X、2.2 的平均数为 2,则极差是 .
4、若 10 个数的平均数是 3,极差是 4,则将这 10 个数都扩大 10 倍,则这组数据的平均数是 ,
极差是 .
5、某活动小组为使全小组成员的成绩都要达到优秀,打算实施“以优帮困”计划,为此统计了上
次测试各成员的成绩(单位:分)
90、95、87、92、63、54、82、76、55、100、45、80
计算这组数据的极差,这个极差说明什么问题?
将数据适当分组,做出频率分布表和频数分布直方图.
答案:1.A ; 2.D ; 3. 0.4 ; 4.30、40. 5(1)极差 55 分,从极差可以
看出这个小组成员成绩优劣差距较大.(2)略
四、教学反思
学生在应用知识的时候容易混淆各个量的作业及其意义,所以要加强对概念和基础知识
的巩固,其次学生在做题中容易出现计算错误,所以强化训练部不可少,梳理自己的思路,
找出自己的错误.