3.1.1方程的根与函数的零点教学分析函数作为高中的重点知识有着广泛应用,与其他数学内容有着有机联系.课本选取探究具体的一元二次方程的根与其对应的二次函数的图象与x轴的交点的横坐标之间的关系作为本节内容的入口,其意图是让学生从熟悉的环境中发现新知识,使新知识与原有知识形成联系.本节设计特点是由特殊到一般,由易到难,这符合学生的认知规律;本节体现的数学思想是:“数形结合”思想和“转化”思想.本节充分体现了函数图象和性质的应用.因此,把握课本要从三个方面入手:新旧知识的联系,学生认知规律,数学思想方法.另外,本节也是传统数学方法与现代多媒体完美结合的产物.三维目标1.让学生明确“方程的根”与“函数的零点”的密切联系,学会结合函数图象性质判断方程根的个数,学会用多种方法求方程的根和函数的零点.2.通过本节学习让学生掌握“由特殊到一般”的认知规律,在今后学习中利用这一规律探索更多的未知世界.3.通过本节学习不仅让学生学会数学知识和认知规律,还要让学生充分体验“数学语言”的严谨性,“数学思想方法”的科学性,体会这些给他们带来的快乐.重点难点根据二次函数图象与x轴的交点的个数判断一元二次方程的根的个数;函数零点的概念.课时安排2课时教学过程第1课时方程的根与函数的零点导入新课思路1.(情景导入)据新华社体育记者报道:昨晚足球比赛跌宕起伏,球迷经历了大喜到大悲,再到大喜的过程(领先则喜,落后即悲).请问:整场足球比赛出现几次“比分相同”的时段?学生思考或讨论回答:三次:(1)开场;(2)由领先到落后必经过“比分相同”时段;(3)由落后到领先必经过“平分”时段.教师点拨:足球比赛有“落后”“领先”“比分相同”,函数值有“负”“正”“零”,函数图象与足球比赛一样跌宕起伏.由此导入课题,为后面学习埋好伏笔.思路2.(事例导入)(多媒体动画演示)一枚炮弹从地面发射后,炮弹的高度随时间变化的函数关系式为h=20t-5t2,问炮弹经过多少秒回到地面?炮弹回到地面即高度h=0,求方程20t-5t2=0的根,得t=4秒.如图3-1-1-1.
图3-1-1-1思路3.(直接导入)教师直接点出课题:上一章我们研究函数的图象性质,这一节我们讨论函数的应用,方程的根与函数的零点.推进新课新知探究提出问题①求方程x2-2x-3=0的根,画函数y=x2-2x-3的图象.②求方程x2-2x+1=0的根,画函数y=x2-2x+1的图象.③求方程x2-2x+3=0的根,画函数y=x2-2x+3的图象.④观察函数的图象发现:方程的根与函数的图象和x轴交点的横坐标有什么关系?⑤如何判断一元二次方程根的个数,如何判断二次函数图象与x轴交点的个数,它们之间有什么关系?⑥归纳函数零点的概念.⑦怎样判断函数是否有零点?⑧函数的图象不易画出,又不能求相应方程的根时,怎样判断函数是否有零点?活动:先让学生思考或讨论后再回答,经教师提示、点拨,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路:问题①:先求方程的两个根,找出抛物线的顶点,画出二次函数的图象(图3-1-1-2).问题②:方程有一个根,说明抛物线的顶点在x轴上(图3-1-1-3).问题③:方程没有实数根,抛物线与x轴没有交点,找出抛物线的顶点是画二次函数图象的关键(图3-1-1-4).问题④:方程的根与函数的图象和x轴交点的横坐标都是实数.问题⑤:对于其他函数这个结论正确吗?问题⑥:函数的零点是一个实数.问题⑦:可以利用“转化思想”.问题⑧:足球比赛中从落后到领先是否一定经过“平分”?由此能否找出判断函数是否有零点的方法?函数图象穿过x轴则有零点,怎样用数学语言描述呢?讨论结果:①方程的两个实数根为-1,3.②方程的实数根为1.③方程没有实数根.④方程的根就是函数的图象与x轴交点的横坐标.⑤一元二次方程根的个数,就是二次函数图象与x轴交点的个数,可以用判别式来判定一元二次方程根的个数.a.当Δ>0时,一元二次方程有两个不等的实根x1、x2,相应的二次函数的图象与x轴有两个交点(x1,0)、(x2,0);b.当Δ=0时,一元二次方程有两个相等的实根x1=x2,相应的二次函数的图象与x轴有唯一的交点(x1,0);c.当Δ