§2.2.1 对数与对数运算第一课时一.教学目标:1.知识技能:①理解对数的概念,了解对数与指数的关系;②理解和掌握对数的性质;③掌握对数式与指数式的关系.2.过程与方法:通过与指数式的比较,引出对数定义与性质.3.情感、态度、价值观(1)学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力.(2)通过对数的运算法则的学习,培养学生的严谨的思维品质.(3)在学习过程中培养学生探究的意识.(4)让学生理解平均之间的内在联系,培养分析、解决问题的能力.二.重点与难点:(1)重点:对数式与指数式的互化及对数的性质(2)难点:推导对数性质的三.学法与教具:(1)学法:讲授法、讨论法、类比分析与发现(2)教具:投影仪四.教学过程:1.提出问题思考:(P62思考题)中,哪一年的人口数要达到10亿、20亿、30亿……,该如何解决?即:在个式子中,分别等于多少?象上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数(引出对数的概念).1、对数的概念一般地,若,那么数叫做以a为底N的对数,记作叫做对数的底数,N叫做真数.举例:如:,读作2是以4为底,16的对数.,则,读作是以4为底2的对数.提问:你们还能找到那些对数的例子2、对数式与指数式的互化在对数的概念中,要注意:(1)底数的限制>0,且≠1(2)
指数式对数式幂底数←→对数底数指数←→对数幂←N→真数说明:对数式可看作一记号,表示底为(>0,且≠1),幂为N的指数工表示方程(>0,且≠1)的解.也可以看作一种运算,即已知底为(>0,且≠1)幂为N,求幂指数的运算.因此,对数式又可看幂运算的逆运算.例题:例1(P63例1)将下列指数式化为对数式,对数式化为指数式.(1)54=645(2)(3)(4)(5)(6)注:(5)、(6)写法不规范,等到讲到常用对数和自然对数后,再向学生说明.(让学生自己完成,教师巡视指导)巩固练习:P64练习1、23.对数的性质:提问:因为>0,≠1时,则由1、0=12、1=如何转化为对数式②负数和零有没有对数?③根据对数的定义,=?(以上三题由学生先独立思考,再个别提问解答)由以上的问题得到①(>0,且≠1)②∵>0,且≠1对任意的力,常记为.恒等式:=N4、两类对数①以10为底的对数称为常用对数,常记为.②以无理数e=2.71828…为底的对数称为自然对数,常记为.以后解题时,在没有指出对数的底的情况下,都是指常用对数,如100的对数等于2,即.说明:在例1中,.
例2:求下列各式中x的值(1)(2)(3)(4)分析:将对数式化为指数式,再利用指数幂的运算性质求出x.解:(1)(2)(3)(4)所以课堂练习:P64练习3、4补充练习:1.将下列指数式与对数式互化,有的求出的值.(1)(2)(3)(4)(5)(6)2.求且不等于1,N>0).3.计算的值.4.归纳小结:对数的定义>0且≠1) 1的对数是零,负数和零没有对数对数的性质 >0且≠1 作业:P74习题2.2A组1、2P75B组1